XGBoost与GBDT的联系和区别有哪些?

原始的GBDT算法基于经验损失函数的负梯度来构造新的决策树,只是在决策树构建完成后再进行剪枝。而XGBoost在决策树构建阶段就加入了正则项。

 

 

1. GBDT是机器学习算法,XGBoost是该算法的工程实现。

2. 在使用CART作为基分类器时,XGBoost显式地加入了正则项来控制模型的复杂度,有利于防止过拟合,从而提高模型的泛化能力。

3. GBDT在模型训练时只使用了代价函数的一阶导数信息,XGBoost对代价函数进行二阶泰勒展开,可以同时使用一阶和二阶导数。

4. 传统的GBDT采用CART作为基分类器,XGBoost支持多种类型的基分类器,比如线性分类器。

5. 传统的GBDT在每一轮迭代时使用全部的数据,XGBoost则采用了与随机森林相似的策略,支持对数据进行采样。

6. 传统的GBDT没有设计对缺失值进行处理,XGBoost能够自动学习出缺失值的处理策略。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值