解题思路:详见挑战p207。
dp[i][j]:表示到第i个sorter为止,最大值被移动到第j个位置所需要的最短子序列长度。inf表示不可达。
dp[0][1]=0(0代表没有sorter时,自然只能输出第一位的最大值,需要sorter个数为0)
dp[0][j]=INF(j>1)
dp[i+1][j]=dp[i][j](ti!=j)(如果说第i个sorter的结束位置不为ti,自然不会最大在j的地方)
dp[i+1][j]=min(dp[i][j],min{dp[i][j](si=<j<=ti)}+1)(ti==j)(如果说现在这个sorter在ti的位置停止,那么在目前sorter包括范围内的dp数再加上目前这个sorter就能达到ti了,所以要+1)
但是这样复杂度O(mn),会超时。其实可以用线段树来维护dp,使得复杂度变为O(mlogn)
为了迎合线段树,dp形式也要改成一维的,但原理和上面是一样的
dp[1]=0,dp[j]=inf(j>1)
dp[ti]=min(dp[ti],min(dp[j])+1,si<t<ti)
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct node
{
int l,r,w;
}s[50009<<2];
const int inf=0x3f3f3f3f;
int a[500009],b[500009];
int dp[50009];
int n,m;
void build(int t,int l,int r)
{
s[t].l=l;
s[t].r=r;
if(l==r)
{
s[t].w=dp[l];
return;
}
build(2*t,l,(l+r)/2);
build(2*t+1,(l+r)/2+1,r);
s[t].w=min(s[2*t].w,s[2*t+1].w);
}
void update(int t,int l,int r,int w)
{
if(s[t].l==l&&s[t].r==r)
{
s[t].w=w;
return;
}
int mid=(s[t].l+s[t].r)/2;
if(r<=mid)
{
update(2*t,l,r,w);
}else
if(l>mid)
{
update(2*t+1,l,r,w);
}else
{
update(2*t,l,mid,w);
update(2*t+1,mid+1,r,w);
}
s[t].w=min(s[2*t].w,s[2*t+1].w);
}
int query(int t,int l,int r)
{
if(s[t].l==l&&s[t].r==r)
{
return s[t].w;
}
int mid=(s[t].l+s[t].r)/2;
if(r<=mid)
{
return query(2*t,l,r);
}else
if(l>mid)
{
return query(2*t+1,l,r);
}else
{
return min(query(2*t,l,mid),query(2*t+1,mid+1,r));
}
}
void solve()
{
for(int i=0;i<m;i++)
{
dp[b[i]]=min(dp[b[i]],query(1,a[i],b[i])+1);
update(1,b[i],b[i],dp[b[i]]);
}
printf("%d\n",dp[n]);
}
int main()
{
//freopen("t.txt","r",stdin);
while(scanf("%d%d",&n,&m)!=EOF)
{
for(int i=0;i<m;i++)
{
scanf("%d%d",&a[i],&b[i]);
}
fill(dp,dp+50009,inf);
dp[1]=0;
build(1,1,n);
solve();
}
return 0;
}