此处,我是用的归纳法来证明的。假设该结论成立。
1.当n=1时,
此时矩阵为一个实数,结论成立。
2.假设n=k-1时,结论成立,记此时的矩阵为
A
k
A_k
Ak,即
r
(
A
k
)
=
k
−
1
r(A_k)=k-1
r(Ak)=k−1或者
r
(
A
k
)
=
k
−
2
r(A_k)=k-2
r(Ak)=k−2。
则当
n
=
k
n=k
n=k时,我们先给矩阵
A
k
A_k
Ak添加一行,结果为
[
A
k
a
1
T
]
\left[ \begin{matrix} A_k\\ a_1^T \end{matrix} \right]
[Aka1T]
其中,
a
1
T
=
[
0
β
]
a^T_1=[0 \quad\beta]
a1T=[0β],0代表长度为
k
−
2
k-2
k−2的零向量,此时我们可以看出该矩阵的秩为
k
−
1
k-1
k−1,因为对于上述矩阵,不存在非零的
b
1
,
b
2
,
.
.
.
,
b
k
−
1
b_1,b_2,...,b_{k-1}
b1,b2,...,bk−1使得上述矩阵的列之间线性相关(毕竟存在着一个
β
\beta
β)。
记上述矩阵为
A
A
A。接着,我们再给上述矩阵添加一列,
[
A
a
2
]
\left[ \begin{matrix} A & a_2 \end{matrix} \right]
[Aa2]
其中,
a
1
=
[
0
β
α
]
′
a_1=[0 \quad\beta \quad \alpha]'
a1=[0βα]′,0代表长度为
k
−
2
k-2
k−2的零向量。因为上面已经证明了
A
A
A是秩为
k
−
1
k-1
k−1的矩阵,即
A
A
A的列向量组的秩为
k
−
1
k-1
k−1,列向量组里向量的数量为
k
k
k,所以再添加一个长度为
k
k
k的向量,组成的新向量组的秩要么为
k
k
k,即新的向量组组成了长度为
k
k
k的向量空间的一组最大线性无关向量组,要么秩为
k
−
1
k-1
k−1,即新的列向量能被其他的列向量线性表示。
故当
n
=
k
n=k
n=k时,对角线均不为零的三对角矩阵的秩为
k
−
1
k-1
k−1或者
k
k
k。
综上,得证。
以上是本人自己的证明思路,若有错误之处,望大家批评指正。^.^