如何证明次对角线均不为零的三对角矩阵的秩为n或者n-1

此处,我是用的归纳法来证明的。假设该结论成立。
1.当n=1时,
此时矩阵为一个实数,结论成立。

2.假设n=k-1时,结论成立,记此时的矩阵为 A k A_k Ak,即 r ( A k ) = k − 1 r(A_k)=k-1 r(Ak)=k1或者 r ( A k ) = k − 2 r(A_k)=k-2 r(Ak)=k2
则当 n = k n=k n=k时,我们先给矩阵 A k A_k Ak添加一行,结果为
[ A k a 1 T ] \left[ \begin{matrix} A_k\\ a_1^T \end{matrix} \right] [Aka1T]
其中, a 1 T = [ 0 β ] a^T_1=[0 \quad\beta] a1T=[0β],0代表长度为 k − 2 k-2 k2的零向量,此时我们可以看出该矩阵的秩为 k − 1 k-1 k1,因为对于上述矩阵,不存在非零的 b 1 , b 2 , . . . , b k − 1 b_1,b_2,...,b_{k-1} b1,b2,...,bk1使得上述矩阵的列之间线性相关(毕竟存在着一个 β \beta β)。
记上述矩阵为 A A A。接着,我们再给上述矩阵添加一列,
[ A a 2 ] \left[ \begin{matrix} A & a_2 \end{matrix} \right] [Aa2]
其中, a 1 = [ 0 β α ] ′ a_1=[0 \quad\beta \quad \alpha]' a1=[0βα],0代表长度为 k − 2 k-2 k2的零向量。因为上面已经证明了 A A A是秩为 k − 1 k-1 k1的矩阵,即 A A A的列向量组的秩为 k − 1 k-1 k1,列向量组里向量的数量为 k k k,所以再添加一个长度为 k k k的向量,组成的新向量组的秩要么为 k k k,即新的向量组组成了长度为 k k k的向量空间的一组最大线性无关向量组,要么秩为 k − 1 k-1 k1,即新的列向量能被其他的列向量线性表示。
故当 n = k n=k n=k时,对角线均不为零的三对角矩阵的秩为 k − 1 k-1 k1或者 k k k

综上,得证。

以上是本人自己的证明思路,若有错误之处,望大家批评指正。^.^

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值