机器学习
文章平均质量分 54
主要介绍传统机器学习方法,参考李航《统计学习方法》内容
qq_39865109
这个作者很懒,什么都没留下…
展开
-
浅谈人脸检测MTCNN以及Pytorch代码
MTCNN网络架构分析P-net 从总体看,网络是全卷积结构,优点是可以输入任意大小的的图片(针对侦测的时候)。训练的时候输入尺寸是12*12,然后经过3*3的卷积核和池化到1*1*32的过程中都是通道增加的,也就是特征融合的过程。最后分3个类别做输出一个是置信度、一个是边框的偏移量,另一个是十个关键点的位置。R-net 首先R-net是卷积+全链接结构,代表着输入图片大小固定只能是24*24。然后经过卷积池化到特征图3*3*64同样为特征融合过程,最后res...原创 2021-01-14 17:42:06 · 856 阅读 · 3 评论 -
Pytorch完整训练猫狗分类基本代码
import osimport torchfrom torch.utils import datafrom PIL import Imageimport numpy as npimport torch.nn as nnimport numpy as npfrom torch.utils import data# 定义一个类返回数据长度给dataLoader使用,还返回标签和数据class dataset(data.Dataset): def __init__(self,pat.原创 2021-01-09 14:00:11 · 1525 阅读 · 2 评论 -
机器学习 经验误差与过拟合
经验误差与过拟合1 经验误差2 过拟合如图很好的解释了过拟合和欠拟合为什么会过拟合或欠拟合从方差和偏差的角度理解过拟合和欠拟合:上图中红色圆圈代表目标值,蓝色点代表预测值。从训练,验证的角度看过拟合和欠拟合。高方差一般是过拟合的情况,这里的方差一般指训练集的精度和验证集精度方差,在没有欠拟合的情况下,高方差代表训练集的精度和验证集精度相差较大。此时一般是过拟合。从回...原创 2019-10-01 23:26:44 · 315 阅读 · 0 评论 -
机器学习 评估方法
1 留出法2 交叉验证3 自助法4 调参与最终模型python实现以上# In[]#import numpy as np#import pandas as pdimport numpy as npimport pandas as pd# 读入数据,为dataframe格式df = pd.read_csv('iris.data', header...原创 2019-10-05 19:56:52 · 217 阅读 · 0 评论 -
机器学习 性能度量
1 混淆矩阵代码分析# 性能度量方法# In[]import numpy as npimport pandas as pd# 读入数据,为dataframe格式data_dir = 'F:/2019-notebook/2017_2018_2/python_code/MTrain/MachineLearn/3_ML/1.6/'df = pd.read_csv(dat...原创 2019-10-05 20:28:55 · 166 阅读 · 0 评论 -
机器学习 线性回归
线性回归此处显示5个特征的分析以下是代价函数。下面是预测函数。原创 2019-10-06 10:22:33 · 164 阅读 · 0 评论