动态规划-最大K乘积

  • 问题描述
    设I是一个n位十进制整数。如果将I划分为k段,则可得到k个整数。这k个整数的乘积称为I的一个k乘积。试设计一个算法,对于给定的I和k,求出I的最大k乘积。
    例如十进制整数 1234 划分为 3 段可有如下情形:
    1 × 2 × 34 = 68
    1 × 23 × 4 = 92
    12 × 3 × 4 = 144

  • 编程任务
    对于给定的I 和k,编程计算I 的最大k 乘积。

  • 数据输入
    输入的第1 行中有2个正整数n和k。正整数n是序列的长度;正整数k是分割的段数。接下来的一行中是一个n位十进制整数。(n<=10)

  • 结果输出
    计算出的最大k乘积。

  • 分析:
    a[i][j]表示从十进制数中i到j的数,如123546中a[2][4] = 235
    dp[i][k]表示i位数分成k段的最大值
    则有dp[i][1] = a[1][i]
    dp[i][k] = max(dp[d][k - 1] * a[d][i])

  • 输入示例

3 2
312

  • 输出示例

62

#include <iostream>
#include <string.h>
#include <algorithm>
using namespace std;

int dp[15][15];     //最大乘积数组

char numstr[15];
int num[15];

int getValue(int i,int j){
    int sum = 0;
    for(int k = i;k < j;k++){
        sum += num[k];
        sum *= 10;
    }
    return sum + num[j];
}

void dpAlgo(int l,int k){
    for(int i = 1;i <= l;i++)
        dp[i][1] = getValue(1,i);
    for(int i = 0;i <= l;i++){
        for(int j = 2;j <= k;j++){
            int temp = 0;
            for(int d = 1;d < i;d++)
                temp = max(temp,dp[d][j - 1] * getValue(d + 1,i));
            dp[i][j] = temp;
        }
    }
}

int main()
{
    int l,k;
    cin >> l >> k >> numstr;
    for(int i = 0;i < l;i++)
        num[i + 1] = numstr[i] - '0';
    dpAlgo(l,k);
    cout << dp[l][k];
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值