-
问题描述
设I是一个n位十进制整数。如果将I划分为k段,则可得到k个整数。这k个整数的乘积称为I的一个k乘积。试设计一个算法,对于给定的I和k,求出I的最大k乘积。
例如十进制整数 1234 划分为 3 段可有如下情形:
1 × 2 × 34 = 68
1 × 23 × 4 = 92
12 × 3 × 4 = 144 -
编程任务
对于给定的I 和k,编程计算I 的最大k 乘积。 -
数据输入
输入的第1 行中有2个正整数n和k。正整数n是序列的长度;正整数k是分割的段数。接下来的一行中是一个n位十进制整数。(n<=10) -
结果输出
计算出的最大k乘积。 -
分析:
a[i][j]表示从十进制数中i到j的数,如123546中a[2][4] = 235
dp[i][k]表示i位数分成k段的最大值
则有dp[i][1] = a[1][i]
dp[i][k] = max(dp[d][k - 1] * a[d][i]) -
输入示例
3 2
312
- 输出示例
62
#include <iostream>
#include <string.h>
#include <algorithm>
using namespace std;
int dp[15][15]; //最大乘积数组
char numstr[15];
int num[15];
int getValue(int i,int j){
int sum = 0;
for(int k = i;k < j;k++){
sum += num[k];
sum *= 10;
}
return sum + num[j];
}
void dpAlgo(int l,int k){
for(int i = 1;i <= l;i++)
dp[i][1] = getValue(1,i);
for(int i = 0;i <= l;i++){
for(int j = 2;j <= k;j++){
int temp = 0;
for(int d = 1;d < i;d++)
temp = max(temp,dp[d][j - 1] * getValue(d + 1,i));
dp[i][j] = temp;
}
}
}
int main()
{
int l,k;
cin >> l >> k >> numstr;
for(int i = 0;i < l;i++)
num[i + 1] = numstr[i] - '0';
dpAlgo(l,k);
cout << dp[l][k];
return 0;
}