密码学概述4

本周主要完成了有关模算术基本群论大数分解RSA假设的相关内容。其次回顾了上周的学习内容。
因为公钥密码学的构造方法依赖于某个困难问题。这周就是看了一些“困难的”问题。作者介绍了一个与因子分解假设的困难程度相当的RSA假设。因子分解假设就是用一个GenModulus算法得到(N,p,q),敌手在只知道N的情况下猜测p,q的值,其猜中的概率可忽略时,就说因子分解问题与GenModulus相关是困难的。而RSA假设就是利用N的分解形式的情况来判定RSA问题是不是困难的。虽然说假设“RSA问题是困难的”比假设“因子分解问题是困难的”的假设更强,但当GenRSA算法用GenModulus算法为基础来构造时,当分解问题与GenModulus相关是困难的,则RSA问题与GenRSA相关是困难的。
关于对称密钥密码学这部分内容,作者从敌手的攻击类型这个角度出发,分别讲述了四种不同的对称密钥加密方案。针对已知明文攻击,作者先通过一个窃听不可区分实验给出正式的安全定义。其次开始构造一个在窃听者存在情况下的安全的加密方案。然后对这个方案进行安全性证明,使用的是规约的方法。针对选择明文攻击,也是同样的方法:用一个实验给出正式的安全定义→构造方法→安全性证明。这里将CPA加密方案的安全性归约到了伪随机函数上,也就是证明随机函数与伪随机函数不可区分。针对选择密文攻击,也是同样的方法。这个加密方案需要一个对称密钥加密方案和一个消息鉴别码方案,分别使用两个不同的密钥k1和k2,加密明文和产生密文的消息鉴别码。这里的证明过程比较复杂,将方案的安全性归约到了对称密钥加密方案的CPA安全性上。DES分组密码是一个16轮的Feistel网络,它将64比特长的分块平均分为两块,每块32比特,通过一个扩展函数将32比特的分块扩展成48比特,然后将这个结果跟48为的子密钥异或,结果被分为8块,每块为6比特,每一个分块经过不同的S盒,将这8个输出连接起来得到一个32位的结果,最后对这个结果进行混合置换,就得到了最终的输出。AES也就是Rijndael,它是一个代替置换网络。输入是128比特,也就是16字节,这个4*4的16字节数组通过密钥异或、字节代替、行移位和列混合操作,得到最后的输出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值