Hive解析Json格式的日志文件

搬运自:
(35条消息) 【Hive】解析json(get_json_object)_喜东东cc的博客-CSDN博客_get_json_object

 

get_json_object(string json_string, string path)

说明:
第一个参数填写json对象变量,第二个参数使用$表示json变量标识,然后用 . 或 [] 读取对象或数组;如果输入的json字符串无效,那么返回NULL。
每次只能返回一个数据项。


例子:

data 为 test表中的字段,数据结构如下:

data =
{
 "store":
        {
         "fruit":[{"weight":8,"type":"apple"}, {"weight":9,"type":"pear"}],  
         "bicycle":{"price":19.95,"color":"red"}
         }, 
 "email":"amy@only_for_json_udf_test.net", 
 "owner":"amy" 
}

1.得到单层值:hive> select get_json_object(data, '$.owner') from test; 结果:amy

2.得到多层的值:hive> select get_json_object(data, '$.store.bicycle.price') from test; 结果:19.95

3.得到数组的值:hive> select get_json_object(data, '$.store.fruit[0]') from test; 结果:{"weight":8,"type":"apple"}

第二种方式:

使用sparkSQL:

var df = spark.read.format("json").load("路径')或者是 var df = spark.read.json("路径")

例子:

user.json文件:

{"name":"Michael","age":20}
{"name":"Andy","age":30}
{"name":"Justin","age":19}
 

首先读取json文件,将它封装在一个DataFrame中,之后创建一个临时视图,相当于取个表名,但临时视图只在当前会话中有效,可以通过createGlobalTempView创建全局视图,之后使用sparksql进行查询,最后再show就可以了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值