杨辉三角数学性质及参考例题

本文介绍了杨辉三角的基本性质,利用组合数公式解释第n行第m个数的计算方法,并通过一个C++代码示例展示如何获取指定行的数。适合理解杨辉三角结构及其在数学中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、基本性质

在这里插入图片描述

  • 每行数字左右对称,由 1开始逐渐变大再变小,并最终回到 1。
  • 每个数字等于上一行的左右两个数字之和。
  • 第 n 行的第 m 个数( n 与 m 均从 0 开始编号)可以被表示为组合数 C n m C_n^m Cnm = n ! m ! ∗ ( n − m ) ! \frac {n!}{m! * (n - m)!} m!(nm)!n!
  • ( a + b ) n (a+b)^n (a+b)n的展开式(二项式展开)中的各项系数依次对应杨辉三角的第 n 行中的每一项。

二、例题

例题一

原题链接

问题描述

给定一个非负索引 rowIndex,返回「杨辉三角」的第 rowIndex 行。

在「杨辉三角」中,每个数是它左上方和右上方的数的和。

在这里插入图片描述

基本思路

根据杨辉三角性质,第 n 行的第 m 个数( n 与 m 均从 0 开始编号)可表示为可以被表示为组合数 C n m C_n^m Cnm,又因为 C n m C_n^m Cnm = C n m − 1 C_n^{m-1} Cnm1 x n − m + 1 m \frac {n-m+1}{m} mnm+1( 初值 C n 0 C_n^0 Cn0 = 1 )。

参考代码

class Solution {
public:
    vector<int> getRow(int rowIndex) {
        vector<int> ans;
        long long tmp = 1;
        for(int i = 1; i <= rowIndex + 1; i++){
            ans.push_back(tmp);
            tmp = tmp * (rowIndex - i + 1LL) / i;
        }
        return ans;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值