文章目录
2.4.0 关系运算符
- 集合运算符
- 并:∪
- 差: -
- 交:∩
- 笛卡尔积:×
- 专门的关系运算符
- 选择: σ \sigma σ
- 投影: ∏ \prod ∏
- 连接: ▹ \triangleright ▹ ◃ \triangleleft ◃
- 除:÷
2.4.1 传统的集合运算
1)并(union)
2)差(except)
3)交(intersection)
4)笛卡尔积(Cartesian Product)
2.4.2 专门的关系运算
1)选择(selection)
在关系R中选择满足给定条件的诸元组(行),记作:
- σ F ( R ) = { t ∣ t ∈ R ⋀ F ( t ) = ′ 真 ′ } \sigma_F(R) = \{t| t \in R \bigwedge F(t)= '真'\} σF(R)={t∣t∈R⋀F(t)=′真′}
- 逻辑表达式F的基本形式为: X 1 θ Y 1 X_1\theta Y_1 X1θY1。其中X1是某一属性名, θ \theta θ是比较运算符(可以是=,>,<等),Y1是属性的某一值
学生关系:
查询属性Sdept
的值为IS
的数据
2)投影(Projection)
从R中选择出若干属性列
组成新的关系
- π A ( R ) = { t [ A ] ∣ t ∈ R } \pi_A(R)=\{t[A] | t \in R\} πA(R)={t[A]∣t∈R},其中,A:R中的属性列
对比选择
与投影
:
选择
: 选出若干行
投影
: 选出若干列
3)连接(Join)
(1)定义
(2)一般连接
(3)等值连接
(4)自然连接
自然连接是一种特殊的等值连接。
他要求两个关系中进行比较的分量必须是同名的属性组,并且在结果中把重复的属性列去掉。
(5)外连接
- 外连接
- 如果把舍弃的元组也保存在结果关系中,而在其他属性上填空值(Null),这种连接就叫做外连接(OUTER JOIN)。
- 所谓外连接就是算上舍弃的元组
- 左外连接
- 如果只把左边关系R中要舍弃的元组保留就叫做左外连接(LEFT OUTER JOIN或LEFT JOIN)
- 保留左边关系中丢弃的元组
- 右外连接
- 如果只把右边关系S中要舍弃的元组保留就叫做右外连接(RIGHT OUTER JOIN或RIGHT JOIN)。
- 保留右边关系中丢弃的元组
4)除(Division)
设关系R、S,R ÷ S包含所有在R但不在S中的属性及其值,且R ÷ S的元组与S的元组的所有组合都在R中
解释:
- 在关系R中,A可以取四个值{a1,a2,a3,a4}
- a1的象集为 {(b1,c2),(b2,c3),(b2,c1)}
- a2的象集为 {(b3,c7),(b2,c3)}
- a3的象集为 {(b4,c6)}
- a4的象集为 {(b6,c6)}
- S在(B,C)上的投影为
{(b1,c2),(b2,c1),(b2,c3) } - 只有a1的象集包含了S在(B,C)属性组上的投影
所以 R÷S ={a1}