2.4 关系代数


2.4.0 关系运算符

  • 集合运算符
    • 并:∪
    • 差: -
    • 交:∩
    • 笛卡尔积:×
  • 专门的关系运算符
    • 选择: σ \sigma σ
    • 投影: ∏ \prod
    • 连接: ▹ \triangleright ◃ \triangleleft
    • 除:÷

2.4.1 传统的集合运算

1)并(union)

在这里插入图片描述

在这里插入图片描述

2)差(except)

在这里插入图片描述
在这里插入图片描述

3)交(intersection)

在这里插入图片描述
在这里插入图片描述

4)笛卡尔积(Cartesian Product)

在这里插入图片描述
在这里插入图片描述

2.4.2 专门的关系运算

1)选择(selection)

在关系R中选择满足给定条件的诸元组(行),记作:

  • σ F ( R ) = { t ∣ t ∈ R ⋀ F ( t ) = ′ 真 ′ } \sigma_F(R) = \{t| t \in R \bigwedge F(t)= '真'\} σF(R)={ttRF(t)=}
  • 逻辑表达式F的基本形式为: X 1 θ Y 1 X_1\theta Y_1 X1θY1。其中X1是某一属性名, θ \theta θ是比较运算符(可以是=,>,<等),Y1是属性的某一值

学生关系:
在这里插入图片描述
查询属性Sdept的值为IS的数据
在这里插入图片描述

2)投影(Projection)

从R中选择出若干属性组成新的关系

  • π A ( R ) = { t [ A ] ∣ t ∈ R } \pi_A(R)=\{t[A] | t \in R\} πA(R)={t[A]tR},其中,A:R中的属性列

对比选择投影:

  • 选择: 选出若干

在这里插入图片描述

  • 投影: 选出若干
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

3)连接(Join)

(1)定义

在这里插入图片描述
在这里插入图片描述

(2)一般连接

在这里插入图片描述在这里插入图片描述

(3)等值连接

在这里插入图片描述
在这里插入图片描述

(4)自然连接

自然连接是一种特殊的等值连接。他要求两个关系中进行比较的分量必须是同名的属性组,并且在结果中把重复的属性列去掉。
在这里插入图片描述
在这里插入图片描述

(5)外连接

  • 外连接
    • 如果把舍弃的元组也保存在结果关系中,而在其他属性上填空值(Null),这种连接就叫做外连接(OUTER JOIN)。
    • 所谓外连接就是算上舍弃的元组
  • 左外连接
    • 如果只把左边关系R中要舍弃的元组保留就叫做左外连接(LEFT OUTER JOIN或LEFT JOIN)
    • 保留左边关系中丢弃的元组
  • 右外连接
    • 如果只把右边关系S中要舍弃的元组保留就叫做右外连接(RIGHT OUTER JOIN或RIGHT JOIN)。
    • 保留右边关系中丢弃的元组
      在这里插入图片描述
      在这里插入图片描述
      在这里插入图片描述

4)除(Division)

设关系R、S,R ÷ S包含所有在R但不在S中的属性及其值,且R ÷ S的元组与S的元组的所有组合都在R中
在这里插入图片描述
解释:

  • 在关系R中,A可以取四个值{a1,a2,a3,a4}
    • a1的象集为 {(b1,c2),(b2,c3),(b2,c1)}
    • a2的象集为 {(b3,c7),(b2,c3)}
    • a3的象集为 {(b4,c6)}
    • a4的象集为 {(b6,c6)}
  • S在(B,C)上的投影为
    {(b1,c2),(b2,c1),(b2,c3) }
  • 只有a1的象集包含了S在(B,C)属性组上的投影

所以 R÷S ={a1}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值