数据库原理:笔记-0x01

关系数据结构及其定义

域和笛卡尔积

三个域:

D1=导师集合={刘老根,范德彪}
D2=专业集合={播种,浇水,松土}
D3=学生集合={张三,李四}

D1×D2×D3的笛卡尔积:

D1×D2×D3={
(刘老根,播种,张三),(刘老根,播种,李四),
(刘老根,浇水,张三),(刘老根,浇水,李四),
(刘老根,松土,张三),(刘老根,松土,李四),
(范德彪,播种,张三),(范德彪,播种,李四),
(范德彪,浇水,张三),(范德彪,浇水,李四),
(范德彪,松土,张三),(范德彪,松土,李四),
}

其中,(刘老根,播种,张三)(刘老根,播种,李四)等是元组;刘老根浇水李四等是分量。

关系

关系是笛卡尔积的有限子集,是一个二维表,表中的每一行称为元组(记录),表中的每一列称为属性。
  • 候选码(关键字):能够唯一地标识一个元组的属性或属性组合
  • 主码:候选码多于一个时,选其中之一。
  • 主属性:候选码中的属性。

基本关系具有的性质:
(1)不同的列可出自同一个域
(2)行、列的次序可任意交换
(4)任意两个元组不能完全相同
(5)每个分量必须是不可分的数据项

关系模式的定义:R(U, D, DOM, F)

  • R:关系名
  • U:组成关系的属性集合
  • D:属性集U所来自的域
  • DOM:属性向域的映象集合
  • F:属性间数据的依赖关系集合
    简记为:R(U, F)或R(U)

关系操作

在这里插入图片描述
(红色为基本操作)

关系的完整性

实体完整性

规则:若属性A是关系R的主属性,则A不能取空值(即不确定的值)
作用:用于标识实体的存在性(非空)与实体的可区分性(主码值唯一)
例:学生表中学号属性不能为空且取值唯一

参照完整性

外码:设F是关系R的一组属性,但不是R的码,若F与关系S的主码Ks相对应,则称F是关系R的外码。
规则:若属性(或属性组)F是基本关系R的外码,它与基本关系S的主码Ks相对应(基本关系R和S不一定是不同的关系),则对于R中每个元组在F上的值要么取空值(F中每个属性值均空),要么等于S中某个元组的主码值。

用户定义完整性

用于表达应用系统的特殊约束与语义要求
例:学生成绩A∈[0,100]、职工年龄B∈[18,60]

关系代数

关系代数运算符

在这里插入图片描述

集合运算

在这里插入图片描述
在这里插入图片描述

关系运算

选择运算(Selection)

含义:从关系中找出满足给定条件的元组构成新关系。
在这里插入图片描述
图解:
在这里插入图片描述
举例:
在这里插入图片描述

投影运算(Projection)

含义:从关系中挑选符合条件的属性组成新关系
图解:
在这里插入图片描述
举例:
在这里插入图片描述

连接运算(Join):

θ连接
在这里插入图片描述
在这里插入图片描述

等值连接:
在这里插入图片描述

自然连接是一种特殊的等值连接,两个关系中进行比较的分量必须是相同的属性组,在结果中把重复的属性列去掉。
外连接:如果把舍弃的元组也保存在结果关系中,而在其他属性上填空值(Null),这种连接就叫做外连接。
左外连接:如果只把左边关系R中要舍弃的元组保留就叫做左外连接。
右外连接:如果只把右边关系S中要舍弃的元组保留就叫做右外连接。

除运算(Division)

含义:R的元组在X上分量值x的象集Yx包含S在Y上投影的集合。
举例:
在这里插入图片描述
R和S共有的属性是B、C,R有但S没有的属性是A。
S在B、C上的投影:

BC
b1c1
b2c1
b2c3

R中A的取值里,a1对应的象集:

BC
b1c1
b2c1
b2c3

a2对应的象集:

BC
b3c7
b2c3

a3对应的象集:

BC
b4c6

a4对应的象集:

BC
b6c6

只有a1对应的象集包含S的投影,所以R➗S为:

A
a1

(遇到全部、所有、包含字眼的,用除运算)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值