- 博客(111)
- 收藏
- 关注
原创 贝叶斯定理
有些东西真的是天赋,临近高考了,有些感触,那天和XXX吃饭聊天时候。他提到说:儿子学校的年级前两名,每次模拟都是700分,两个女娃子很厉害,还天天聊王者荣耀,回家也是玩。我说:没办法,可能就是天赋,有的人做了1000道题就为了搞懂一个公式,结果题一变又不会了,有的人看了一遍公式,就能应对后面的1000道题,还觉得这很简单,去哪说理去。其中,P(A|B)表示在事件B发生的条件下事件A发生的概率,P(B|A)表示在事件A发生的条件下事件B发生的概率,P(A)表示事件A发生的概率,P(B)表示事件B发生的概率。
2024-05-23 16:21:58 2172
原创 Ubuntu 20.04安装桌面XFCE
LightDM,即:Light Display Manager,是一个全新的、轻量的Linux桌面的桌面显示管理器,而传统的Ubuntu用的是GNOME桌面标准的GDM。LightDM是一个跨桌面显示管理器,其目的是成为 X org X 服务器的标准显示管理器。我们之所以编写一个新的显示管理器,是因为从XDM以来 (通常基于 XDM 源代码) 出现了很多新的显示管理器。这些项目之间的主要区别是在GUI(比如说不同的开发工具包) 和性能上面— — 这些可以更好地用一个通用的显示管理器实现,并允许这些差异。
2024-05-05 09:39:04 4145
原创 工业数学模型——高炉煤气发生量预测(三)
冶金过程中生产的各种煤气,例如高炉煤气、焦炉煤气、转炉煤气等。作为重要的副产品和二次能源,保证它们的梯级利用和减少放散是煤气能源平衡调控的一项紧迫任务,准确的预测煤气的发生量是实现煤气系统在线最优调控的前提。
2024-04-17 17:08:32 6671
原创 工业数学模型——钢坯力学性能预测(二)
无论使用什么样的钢材,其机械性能都非常重要,主要性能通常是屈服强度和抗拉强度、延伸率和断面收缩率。力学性能可以通过试验室试验评估,使用钢材成品试样在类似的轧制条件下进行拉力试验。本文旨在利用数学模型构建了一种基于工业大数据为基础的钢坯力学性能预测模型。钢坯力学性能预测对于缩短产品研发周期,提高质量稳定性,提高生产效率,减排降耗等方面具有重要显示意义。
2024-04-02 13:57:32 6229
原创 opencv收录
1.介绍OpenCV是计算机视觉中经典的专用库,其支持多语言、跨平台,功能强大。OpenCV-Python为OpenCV提供了Python接口,使得使用者在Python中能够调用C/C++,在保证易读性和运行效率的前提下,实现所需的功能。2.图像处理基本方法1、图像读入:cv2.imread()使用函数cv2.imread() 读入图像。第一个参数是图片的路径,第二个参数是要告诉函数应该如何读取这幅图片。• cv2.IMREAD_COLOR:读入一副彩色图像。• cv2.IMREAD_GRAY
2024-01-06 10:14:13 2164
原创 事件、概率、分布
并且P(Bi)大于0,则对任一事件A有P(A)=P(A|B1)P(B1) + P(A|B2)P(B2) + …+ P(A|Bi)P(Bi) 或者:p(A)=P(AB1)+P(AB2)+…设A、B是互不相容事件(AB=φ),则P(A∪B)=P(A)+P(B),对任意两个事件A与B,有P(A∪B)=P(A)+P(B)-P(A∩B)P(A∩B) = P(A)*P(B|A)=P(B)*P(A|B)。可变形为:P(A|B)=P(B|A)*P(A)/P(B),An至少有一个发生。差事件:A发生B不发生,记作A-B。
2024-01-02 15:52:40 2473
原创 微分和导数(一)
假设我们有⼀个函数f : R → R,其输⼊和输出都是标量。如果f的导数存在,这个极限被定义为如果f′(a)存在,则称f在a处是可微的。如果f在⼀个区间内的每个数上都是可微的,则此函数在此区间中是可微的。导数f′(x)解释为f(x)相对于x的瞬时变化率。所谓的瞬时变化率是基于x中的变化h,且h接近0。给定y = f(x),其中x和y分别是函数f的⾃变量和因变量。
2023-12-17 11:23:11 2192
原创 线性代数(一)
其中x1, . . . , xn是向量的元素。在代码中,我们通过张量的索引来访问任⼀元素。当我们交换矩阵的⾏和列时,结果称为矩阵的转置(transpose)。对于任意A ∈ R m×n,A的形状是(m,n)或m × n。
2023-12-17 09:44:59 3024
原创 torch.mv
如果input是(n×m)张量,vec是大小为m的1-D张量,out将是大小为n的1-D。执行矩阵input和向量vec的矩阵向量乘积。input(张量)–要相乘的矩阵。out(张量,可选)–输出张量。vec(张量)–要相乘的矢量。
2023-11-08 11:25:10 775
原创 torch.mm
如果input是(n×m)张量,mat2是(m×p)张量,out将是(n x p)张量。执行矩阵input和mat2的矩阵乘法运算。input(张量)–第一个要矩阵相乘的矩阵。mat2(张量)–第二个要矩阵相乘的矩阵。out(张量,可选)–输出张量。
2023-11-08 10:48:03 565
原创 torch.dot
与Numpy的点不同,torch.dot有意只支持计算两个元素数量相同的1维张量的点积。input(张量)–点积中的第一个张量,必须是1维。other(张量)-点积中的第二个张量,必须是1维。out(张量,可选)–输出张量。计算两个1维张量的点积。
2023-11-08 10:40:33 377
原创 Python中的乘法matmul()
torch.matmul() 将两个张量相乘划分成了五种情形:一维 × 一维、二维 × 二维、一维 × 二维、二维 × 一维、涉及到三维及三维以上维度的张量的乘法。
2023-11-08 10:35:12 3370
原创 Deep Java Library(六)DJLServing自定义模型,自定义Translator注意事项
DJLServing自定义模型中自定义Translator注意事项需要仔细读一下DJLServing源码中的ServingTranslatorFactory类,,一开始不了解以为DJLServing选择Translator像玄学,后来看了像迷宫一样ServingTranslatorFactory类大致明白了,以下是源码注释版,还有一个整理的流程图。
2023-09-08 09:11:42 3223
原创 Deep Java Library(五)DJLServing java client demo
使用DJL Serving部署JAVA模型 For Windows
2023-09-07 15:44:49 3150
原创 Deep Java Library(四)使用DJL Serving部署JAVA模型 For Windows
使用DJL Serving部署JAVA 模型 For Windows
2023-09-07 09:43:31 4002
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人