第五章、淘米洗菜——数据预处理,知识点

第五章、淘米洗菜——数据预处理,知识点
缺失值处理
缺失值查询

data_excel.info()

在这里插入图片描述
空值查询
第一种方法

data_excel[data_excel['reject_code'].isna()]

第二种方法

data_excel[data_excel['reject_code'].isna()].head()

在这里插入图片描述
删除缺失值

data_excel.dropna()
data_excel.dropna(how='all')

在这里插入图片描述
填充缺失值,大于30%就删除处理

data_excel.fillna(0).head()
data_excel.fillna({'reject_code':-1})

在这里插入图片描述
重复值,一般就是删除处理
df.drop_duplicates(subset=[],keep=’’)
subset=[ ]
keep=‘first’
keep=‘last’
keep=False
在这里插入图片描述
异常值,一般就是删除处理,但是可以替换成其他数据
replace
repalce(a,b)

索引设置
设置索引,df.set_index()

重命名索引df.rename()

重置索引df.reset_index()

喜欢可以关注【小猪课堂】公众号了解更多内容
还可以添加qq:2658033991后备注书名加入读书群进行技术交流。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值