【统计学】三大相关系数之斯皮尔曼相关系数(spearman correlation coefficient)

本文介绍了斯皮尔曼相关系数,作为统计学中的排名相关工具,适用于处理等级和顺序数据。内容包括其使用场景、理解及Python代码实现,并强调在数据分析面试中的应用价值。
摘要由CSDN通过智能技术生成

斯皮尔曼相关系数是统计学中三大相关系数之一
具有非常好的使用场景,对于解决我们生活中的排名类的问题时使用的比较多,其实大家更多的知道的相关系数是皮尔逊(person)相关系数,这个相关系数我们也会在后面的文章中介绍。
一、斯皮尔曼相关系数的使用场景:
斯皮尔曼等级相关(Spearman’s correlation coefficient for ranked data)主要用于解决名称数据和顺序数据相关的问题。适用于两列变量,而且具有等级变量性质具有线性关系的资料。由英国心理学家、统计学家斯皮尔曼根据积差相关的概念推导而来,一些人把斯皮尔曼等级相关看做积差相关的特殊形式。
二、斯皮尔曼(spearman)相关系数的理解
斯皮尔曼相关性系数,通常也叫斯皮尔曼秩相关系数。“秩”,可以理解成就是一种顺序或者排序,那么它就是根据原始数据的排序位置进行求解
(1)公式
首先对两个变量(X, Y)的数据进行排序,然后记下排序以后的位置(X’, Y’),(X’, Y’)的值就称为秩次,秩次的差值就是上面公式中的di,n就是变量中数据的个数,最后带入公式就可求解结果。

(2)数据要求
因为是定序,所以我们不用管X和Y这两个变量具体的值到底差了多少,只需要算一下它们每个值所处的排列位置的差值,就可以求出相关性系数了
小猪课堂
三、斯皮尔曼(spearman)相关系数的python代码实现

import pandas as pd
import numpy as np
X1=pd.
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值