快速幂模板(luogu P1226 【模板】快速幂||取余运算)

题目描述
输入b,p,k的值,求b^p mod k的值。其中b,p,k*k为长整型数。

输入输出格式
输入格式:
三个整数b,p,k.

输出格式:
输出“b^p mod k=s”

s为运算结果

k*k为长整型,所以要想直接for循环你就凉飕飕,高进度写的脑阔又疼,下面就介绍一个神奇的算法,快速幂!!

如210,可以将10分成二进制下的1010,即210=(2*(21))*(2*(23))=22*28=2^10;

所以任意一个十进制数都可以转化成二进制数,对于a^b,可以将b拆分为二进制的数并逐步运算,可以在log n 下完成,非常快!!
话不多说,直接上代码。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int a,b,m;
int quickPow(int a,int b,int m){
	int sum=1;
	while(b){
		if(b&1) sum=sum*a%m;
		b>>=1;
		a=a*a%m;
	}
	return sum;
}
int main(){
	scanf("%d%d%d",&a,&b,&m);
	printf("%d\n",quickPow(a,b,m));
	return 0;
}

不理解的地方动手模拟一下代码,应该非常好理解

点个赞啦谢谢!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值