某连续函数的不连续导函数图像绘制(matlab实现)

本文通过一个实例展示了如何使用MATLAB来计算并绘制一个在闭区间连续且可导的函数,但其导函数在某点不连续的情况。通过计算左右极限,证明了函数在指定区间连续,而导函数在特定点不连续。随后提供了MATLAB代码以绘制原函数和导函数的图像。
摘要由CSDN通过智能技术生成

 

f(x)在闭区间I连续,在I区间可导,导函数在区间I不一定连续

实例:

使用matlab计算f(x)的在x=0处的左右极限

syms x
%z1为f(x)在区间[-1,0)解析式
y1=(-x).^(3/2).*sin(1./-x);
%计算x=0处的左极限
a=limit(y1,x,0,'left')
% z1为f(x)在区间(0,1]解析式
y2=x.^(3/2).*sin(1./x);
% 计算x=0处的右极限
b=limit(y2,x,0,'right')

得到结果

a=0

b=0

所以

f(x)在区间[-1,1]连续

使用matlab计算f‘(x)的在x=0处的左右极限

syms x
%z1为f(x)在区间[-1,0)导函数
z1=cos(1/x)/(-x)^(1/2) + (3*(-x)^(1/2)*sin(1/x))/2
%计算x=0处的左极限
a=limit(z1,x,0,'left')
% z2为f(x)在区间(0,1]导函数
z2=(3*x^(1/2)*sin(1/x))/2 - cos(1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值