f(x)在闭区间I连续,在I区间可导,导函数在区间I不一定连续
实例:
使用matlab计算f(x)的在x=0处的左右极限
syms x
%z1为f(x)在区间[-1,0)解析式
y1=(-x).^(3/2).*sin(1./-x);
%计算x=0处的左极限
a=limit(y1,x,0,'left')
% z1为f(x)在区间(0,1]解析式
y2=x.^(3/2).*sin(1./x);
% 计算x=0处的右极限
b=limit(y2,x,0,'right')
得到结果
a=0
b=0
所以
f(x)在区间[-1,1]连续
使用matlab计算f‘(x)的在x=0处的左右极限
syms x
%z1为f(x)在区间[-1,0)导函数
z1=cos(1/x)/(-x)^(1/2) + (3*(-x)^(1/2)*sin(1/x))/2
%计算x=0处的左极限
a=limit(z1,x,0,'left')
% z2为f(x)在区间(0,1]导函数
z2=(3*x^(1/2)*sin(1/x))/2 - cos(1