导函数不连续的例子

函数
f ( x ) = { x 2 sin ⁡ 1 x , x > 0 0 , x ⩽ 0 f(x)= \begin{cases}x^{2} \sin \frac{1}{x}, & x>0 \\ 0, & x \leqslant 0\end{cases} f(x)={x2sinx1,0,x>0x0



f − ′ ( 0 ) = lim ⁡ x → 0 − f ( x ) − f ( 0 ) x − 0 = lim ⁡ x → 0 − 0 − 0 x = 0 f + ′ ( 0 ) = lim ⁡ x → 0 + f ( x ) − f ( 0 ) x − 0 = lim ⁡ x → 0 + x 2 sin ⁡ 1 x − 0 x = lim ⁡ x → 0 + x sin ⁡ 1 x = 0 (  因无穷小  ×  有界量  =  无穷小  ) \begin{aligned} f_{-}^{\prime}(0) &=\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{-}} \frac{0-0}{x}=0 \\ f_{+}^{\prime}(0) &=\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{x^{2} \sin \frac{1}{x}-0}{x} \\ &=\lim _{x \rightarrow 0^{+}} x \sin \frac{1}{x}=0 \quad(\text { 因无穷小 } \times \text { 有界量 }=\text { 无穷小 }) \end{aligned} f(0)f+(0)=x0limx0f(x)f(0)=x0limx00=0=x0+limx0f(x)f(0)=x0+limxx2sinx10=x0+limxsinx1=0( 因无穷小 × 有界量 = 无穷小 )
所以 f ′ ( 0 ) = 0 f^{\prime}(0)=0 f(0)=0, 当 x > 0 x>0 x>0
f ′ ( x ) = ( x 2 sin ⁡ 1 x ) ′ = 2 x sin ⁡ 1 x + x 2 cos ⁡ 1 x ( − 1 x 2 ) = 2 x sin ⁡ 1 x − cos ⁡ 1 x f^{\prime}(x)=\left(x^{2} \sin \frac{1}{x}\right)^{\prime}=2 x \sin \frac{1}{x}+x^{2} \cos \frac{1}{x}\left(-\frac{1}{x^{2}}\right)=2 x \sin \frac{1}{x}-\cos \frac{1}{x} f(x)=(x2sinx1)=2xsinx1+x2cosx1(x21)=2xsinx1cosx1
x < 0 x<0 x<0 时, f ′ ( x ) = ( 0 ) ′ = 0 f^{\prime}(x)=(0)^{\prime}=0 f(x)=(0)=0, 所以
f ′ ( x ) = { 2 x sin ⁡ 1 x − cos ⁡ 1 x , x > 0 0 , x ⩽ 0 f^{\prime}(x)= \begin{cases}2 x \sin \frac{1}{x}-\cos \frac{1}{x}, & x>0 \\ 0, & x \leqslant 0\end{cases} f(x)={2xsinx1cosx1,0,x>0x0
因此
f ′ ( 0 − ) = lim ⁡ x → 0 − f ′ ( x ) = lim ⁡ x → 0 − 0 = 0 f^{\prime}\left(0^{-}\right)=\lim _{x \rightarrow 0^{-}} f^{\prime}(x)=\lim _{x \rightarrow 0^{-}} 0=0 f(0)=x0limf(x)=x0lim0=0
f ′ ( 0 + ) = lim ⁡ x → 0 + f ′ ( x ) = lim ⁡ x → 0 + ( 2 x sin ⁡ 1 x − cos ⁡ 1 x ) f^{\prime}\left(0^{+}\right)=\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=\lim _{x \rightarrow 0^{+}}\left(2 x \sin \frac{1}{x}-\cos \frac{1}{x}\right) f(0+)=limx0+f(x)=limx0+(2xsinx1cosx1) 不存在(因为 lim ⁡ x → 0 2 x sin ⁡ 1 x = 0 \lim _{x \rightarrow 0} 2 x \sin \frac{1}{x}=0 limx02xsinx1=0, 而 lim ⁡ x → 0 cos ⁡ 1 x \lim _{x \rightarrow 0} \cos \frac{1}{x} limx0cosx1 属于振荡不存在).

因为在 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+) f ′ ( x ) f^{\prime}(x) f(x) 都存在, 所以 f ( x ) f(x) f(x) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 上连续, 又根据 f ′ ( x ) f^{\prime}(x) f(x) 的表达式,显然当 x ≠ 0 x \neq 0 x=0 时, f ′ ( x ) f^{\prime}(x) f(x) 连续, 而 x = 0 x=0 x=0 f ′ ( x ) f^{\prime}(x) f(x) 的第二类振荡间断点.


2021年9月9日12:55:37

  • 7
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值