【红白蓝彩条排序】
问题描述: 给你一个仅有红,白,蓝三种颜色组成的10个条块序列,现需要你将这些条块按照红,白,蓝的顺序排好,可用1代表红色,2代表白色,3代 表蓝色,要求时间复杂度为O(n)。例如,给定彩色条块序列为:
{蓝、白、红、白、蓝、红、白、白、红、蓝}
则要求排列结果为:
{红、红、红、白、白、白、白、蓝、蓝、蓝}
输入描述:
1 |
|
输出描述:
1 |
|
输入样例:
1 |
|
输出样例:
1 |
|
详细流程:
第一步:将输入的数组送入排序函数中sort,初始化两个int类型的变量,其值分别对应数组vec的第一个值的索引p1和最后一个值的索引p2。
第二步:使用for循环遍历整个数组,当i=0时,判断该值是否为1,如果是,则该值与数组的第一个值进行交互,即swap(vec[p0],vec[i]),然后将p1向前移一位。如果不是,则判断是否为3。如果是3,则将当前值与数组的最后一个值交换,即swap(vec[p2],vec[i]),同时p2的值向前移一位,而i的值需要减一,以保证下次循环判断时可以检测从最后交换过来的值,使得从前到后每一个值都经历过判断,防止漏断。如果不是3,则不做任何操作进入下一个循环。
第三步,一次循环即可得到最终的排序结果。
疑问,为什么for循环的次数是数组元素个数减一却仍然可以遍历每一个元素呢?
举例说明:数组:{3,1,2}
如果使用for则需要遍历3次才能完成所有元素的判断。
但是使用三个元素进行判断辅助时,则只需要n-1次即可。
第一步:p1----3;p2----2,i---3,判断i是不是1,不是。判断i是不是3,是,则将数组[i]与数组[p2]交换,同时p2向前移一次变成p2---1,而p1不变,i的值--后i=-1。
第二步,i++后i=0,i指向不变,i---2,此时判断是否为1或者3,则保持不变。
第三步,i++后i=1,i---1,与p1的指向交换,最终结果为1,2,3.
#include<iostream>
#include<vector>
using namespace std;
void sort(vector<int>& vec)
{
int p0 = 0;//初始化第一个指针
int p2 = vec.size()-1;//初始化第二个指针
for (int i = 0; i < p2; i++)//遍历n-1次即可
{
if (vec[i] == 1)//判断是否为1
{
swap(vec[p0], vec[i]);//交换
++p0;//指针前移
}
else if (vec[i] == 3)//判断是否为3
{
swap(vec[p2], vec[i]);//交换
--i;//i值减一在下一个循环时保持指向当前位置
--p2;//指针后移
}
}
}
int main()
{
vector<int> vec;//创建向量
vec = { 3,2,1,2,3,1,2,2,1,3 };//初始化
sort(vec);//排序
return 0;
}