NLP
文章平均质量分 82
NLP
哇咔咔负负得正
这个作者很懒,什么都没留下…
展开
-
Pytorch LSTM 长短期记忆网络
LSTM原创 2022-08-18 21:43:36 · 614 阅读 · 0 评论 -
Word2Vec Skip-gram 模型实现
model=Word2Vec()criterion=nn.CrossEntropyLoss()optimizer=optim.Adam(model.parameters(),lr=3e-4)#批量大小batch_size=4。原创 2022-07-15 22:46:59 · 398 阅读 · 0 评论 -
神经网络语言模型 NNML 代码实现
输入:K 元语句(Word2Id 形式) 输出:下一个词的概率分布 P 1. 语料库 2. 根据语料库创建词表 构建词与 id 的映射: 构建 id 与词的映射: 输出为预测下一个词的概率分布,所以需要记录词表大小: Word2Vector 需要 Embedding 为几维: 7. 定义 n-gram,用前几个词预测下一个词 8. 定义神经网络隐藏层大小 9. 定义模型 10. 定义损失函数 11. 定义优化器 12. 定义输入 batch 13. 训练 以下两句代码均能实现取出输出结原创 2022-07-14 12:15:15 · 832 阅读 · 0 评论 -
Pytorch 循环神经网络 RNN
Pytorch 循环神经网络 RNN 0. 环境介绍 环境使用 Kaggle 里免费建立的 Notebook 教程使用李沐老师的 动手学深度学习 网站和 视频讲解 小技巧:当遇到函数看不懂的时候可以按 Shift+Tab 查看函数详解。 1. 循环神经网络 1.1 潜变量自回归模型 使用潜变量 hth_tht 总结过去信息。 1.2 RNN 更新隐藏状态: Ht=ϕ(XtWxh+Ht−1Whh+bh)\mathbf{H}_t = \phi(\mathbf{X}_t \mathbf{W}_{xh} +原创 2022-05-08 10:36:15 · 990 阅读 · 0 评论 -
Pytorch 语言模型和数据集
Pytorch 语言模型和数据集 0. 环境介绍 环境使用 Kaggle 里免费建立的 Notebook 教程使用李沐老师的 动手学深度学习 网站和 视频讲解 小技巧:当遇到函数看不懂的时候可以按 Shift+Tab 查看函数详解。 1. 语言模型 假设长度为的文本序列中的词元依次为 x1,x2,…,xTx_1, x_2, \ldots, x_Tx1,x2,…,xT。 于是,xtx_txt(1≤t≤T1 \leq t \leq T1≤t≤T) 可以被认为是文本序列在时间步处的观测或标签。 在给定这样原创 2022-05-06 20:36:15 · 545 阅读 · 1 评论 -
Pytorch 文本预处理
Pytorch 文本预处理 0. 环境介绍 环境使用 Kaggle 里免费建立的 Notebook 教程使用李沐老师的 动手学深度学习 网站和 视频讲解 小技巧:当遇到函数看不懂的时候可以按 Shift+Tab 查看函数详解。 1. 文本预处理 对于序列数据处理问题,我们在上一节中评估了所需的统计工具和预测时面临的挑战。 这样的数据存在许多种形式,文本是最常见例子之一。 例如,一篇文章可以被简单地看作是一串单词序列,甚至是一串字符序列。 本节中,我们将解析文本的常见预处理步骤。 这些步骤通常包括: 将文原创 2022-05-06 16:52:47 · 1081 阅读 · 0 评论 -
Pytorch 序列模型
Pytorch 序列模型 0. 环境介绍 环境使用 Kaggle 里免费建立的 Notebook 教程使用李沐老师的 动手学深度学习 网站和 视频讲解 小技巧:当遇到函数看不懂的时候可以按 Shift+Tab 查看函数详解。 1. 序列模型 1.1 序列数据 实际中很多数据是有时序结构的 电影的评价随时间变化而变化 拿奖后评分上升,直到奖项被忘记 看了很多好电影后,人们的期望变高 季节性:贺岁片、暑期档 导演、演员的负面情报导致评分变低 音乐、语言、文本和视频都是连续的 标题 “狗咬人” 远没有 “人原创 2022-05-06 11:12:21 · 631 阅读 · 0 评论