1.梯度下降拟合四次函数
1.原理
原理其实很简单,对目标函数求梯度,然后使用梯度下降即可。目标函数如下:
f ( x ) = 3.2 ∗ x 4 + 1.5 ∗ x 3 + 4.3 ∗ x 2 + 9.03 ∗ x − 15 f(x) = 3.2 * {x}^4 + 1.5 * {x}^3 + 4.3 * {x}^2 + 9.03 * {x} - 15 f(x)=3.2∗x4+1.5∗x3+4.3∗x2+9.03∗x−15
那么该函数的损失函数则是:
L ( x ) = 1 / n ∗ ∑ i = 1 n ( f ( x i ) − y ( x i ) ) 2 L(x)=1/n*\sum_{i=1}^{n} ({f(x_{i})-y(x_{i})})^2 L(x)=1/n∗i=1∑n(f(xi)−y(xi))2
但是我们不知道这些x的系数,所以要求的函数形式是这样的:
f ( x ) = a ∗ x 4 + b ∗ x 3 + c ∗ x 2 + d ∗ x − e f(x) = a * {x}^4 + b * {x}^3 + c * {x}^2 + d * {x} - e f(x)=a∗x4+b∗x3+c∗x2+d∗x