最优化建模、算法与理论(一)—— 基础知识

参考书籍《最优化:建模、算法与理论》

1 最优化

  • 问题一般形式
min f(x)
s.t. x ∈ X 
其中 x = (x1, x2,··· , xn)T ∈ Rn 是决策变量
f : Rn → R 是目标函数
X ⊆ Rn 是约束集合或可行域,可行域包含的点称为可行解或可行点
记号 s.t. 是 “subject to”的缩写,专指约束条件
  • 最优化算法研究基本步骤:构造最优化模型、确定最优化问题的类型和设计算法、实现算法或调用优化算法软件包进行求解

2 最优化问题的分类

  • 按目标函数和约束函数的形式划分

线性规划:目标函数与约束函数均为线性函数
非线性规划:目标函数和约束函数中至少有一个为非线性函数
二次规划:目标函数是二次函数而约束函数是线性函数
非光滑优化:包含非光滑函数 无导数优化:不能直接求导数的问题
整数规划:变量只能取整数的问题
半定规划:在线性约束下极小化关于半正定矩阵的线性函数的问题
锥规划:半定规划的广义形式

  • 按最优解的性值划分

稀疏优化:最优解只有少量非零元素
低秩矩阵优化:最优解是低秩矩阵

  • 连续和离散优化

连续优化问题:决策变量所在的可行集合是连续的,比如平面、区间等
离散优化问题:指决策变量能在离散集合上取值,比如离散点集、整数集等

  • 无约束和约束优化

无约束优化:决策变量没有约束条件限制,即可行集合 X = Rn
约束优化:指带有约束条件的问题

  • 随机和确定性

随机优化:目标或者约束函数中涉及随机变量而带有不确定性的问题
不像确定性优化:中目标和约束函数都是确定的

  • 凸和非凸优化

凸优化:目标函数和可行域分别是凸函数和凸集
非凸优化:目标函数和可行域至少有一个不为凸
注:因为凸优化问题的任何局部最优解都是全局最优解,其相应的算法设计以及理论分析相对非凸优化问题简单很多

此外还有几何优化、二次锥规划、张量优化、鲁棒优化、全局优化、组合优化、网络规划、随机优化、动态规划、带微分
方程约束优化、微分流形约束优化、分布式优化等。

3 数学基础

这里罗列最优化常用数学概念,一些更基础的内容或者细节会注明知识点,如线性代数、数值代数、概率论等。

3.1 范数

定义 2.1 (范数) 称一个从向量空间 Rn 到实数域 R 的非负函数 || · || 为
范数,如果它满足:
(1) 正定性:对于所有的 v ∈ Rn,有 || v || ⩾ 0,且 || v || = 0 当且仅当 v = 0;
(2) 齐次性:对于所有的 v ∈ Rn 和 α ∈ R,有 || αv || = |α| || v || ;
(3) 三角不等式:对于所有的 v,w ∈ Rn,有 || v + w || ⩽ || v || + || w ||
最常用的向量范数为 ℓp 范数 (p ⩾ 1):
∣ ∣ v ∣ ∣ p = ( ∣ v 1 ∣ p + ∣ v 2 ∣ p + ⋅ ⋅ ⋅ + ∣ v n ∣ p ) 1 F || v || _p = (|v_1|^p + |v_2|^p + ··· + |v_n|^p) ^{\frac{1}{F}} ∣∣vp=(v1p+v2p+⋅⋅⋅+vnp)F1
当 p = ∞ 时,ℓ∞ 范数定义为: || v || ∞ = max(i) |vi|

  • p = 1, 2, ∞ 的情形最重要,分别记为 || · || 1 , || · || 2 和 || · || ∞
  • 矩阵A的 l0 范数为所有元素中非零元素得个数
  • 矩阵A的 l1 范数为所有元素的绝对值之和: ∣ ∣ A ∣ ∣ 1 = ∑ i = 1 m ∑ j = 1 n ∣ a i j ∣ || A || _1 = ∑{_{i=1}^m} ∑{_{j=1}^n} | a _{ij} | ∣∣A1=i=1mj=1naij
  • 矩阵A的 l2 范数(又称F范数)为所有元素的平方和开根号: ∣ ∣ A ∣ ∣ F = ∑ a i j 2 || A || _F = \sqrt{\sum{a{_{ij}^2}}} ∣∣AF=aij2
    F范数具有正交不变性,即 对于任意的正交矩阵 U ∈ R m × m , V ∈ R n × n ,有 ∣ ∣ U A V ∣ ∣ f 2 = ∣ ∣ A ∣ ∣ f ’ 2 对于任意的正交矩阵U\in\mathbb{R}^{m\times{m}},V\in\mathbb{R}^{n\times{n}},有||UAV||{_{f}^{2}} = ||A||{_{f_’}^{2}} 对于任意的正交矩阵URm×mVRn×n,有∣∣UAV∣∣f2=∣∣A∣∣f2

3.2 凸函数

  • 基本定义

f ( θ x + ( 1 − θ ) y ) ≤ θ f ( x ) + ( 1 − θ ) f ( y ) ,对所有 x , y ∈ d o m , 0 ≤ θ ≤ 1 都成立 f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y),对所有x,y\in dom, 0 \leq \theta \leq 1都成立 f(θx+(1θ)y)θf(x)+(1θ)f(y),对所有x,ydom,0θ1都成立
注:这与同济版高等数学中凸函数的定义是反的

在这里插入图片描述

  • 强凸函数

若存在常数 m > 0 ,使得 g ( x ) = f ( x ) − m 2 ∣ ∣ x ∣ ∣ 2 ,为凸函数,则称 f ( x ) 为强凸函数,其中 m 为强凸参数 若存在常数m > 0,使得g(x) = f(x) - \frac{m}{2}||x||^2,为凸函数,则称f(x)为强凸函数,其中m为强凸参数 若存在常数m>0,使得g(x)=f(x)2m∣∣x2,为凸函数,则称f(x)为强凸函数,其中m为强凸参数

  • 意义:f为强凸函数且存在最小值,则f的最小值点唯一。即f为凸函数才有可能求取全局最优解。
  • 常见凸(凹)函数

1.仿射函数: a T x + b a^Tx +b aTx+b
2.指数函数
3.幂函数
4.负熵: x l n x ( x > 0 ) xlnx(x > 0) xlnxx>0
5.所有范数
6.二阶导数 >0 的函数

  • 保凸运算

1. 若 f 是凸函数,则 α f 是凸函数,其中 α ≥ 0 1.若f是凸函数,则\alpha f是凸函数,其中\alpha \geq{0} 1.f是凸函数,则αf是凸函数,其中α0
2. 若 f 1 , f 2 是凸函数 , 则 f 1 + f 2 是凸函数 2.若 f_1,f_2 是凸函数,则 f_1 + f_2 是凸函数 2.f1f2是凸函数,f1+f2是凸函数 3. 若 f 是凸函数 , 则 f ( A x + b ) 是凸函数 3.若 f 是凸函数,则 f ( Ax + b ) 是凸函数 3.f是凸函数,f(Ax+b)是凸函数
4. 若 f 1 , f 2 , ⋅ ⋅ ⋅ , f m 是凸函数 , 则 f ( x ) = m a x f 1 ( x ) , f 2 ( x ) , ⋅ ⋅ ⋅ , f m ( x ) 是凸函数 4.若 f_1 , f_2 , · · · , f_m 是凸函数,则 f ( x ) = max { f_1 ( x ), f_2 ( x ) , · · · , f_m ( x )}是凸函数 4.f1,f2,⋅⋅⋅,fm是凸函数,f(x)=maxf1(x),f2(x),⋅⋅⋅,fm(x)是凸函数
5. 若对每个 y ∈ A , f ( x , y ) 关于 x 是凸函数 , 则 g ( x ) = sup ⁡ y ∈ A f ( x , y ) 是凸函数 5.若对每个 y ∈ A , f ( x, y ) 关于 x 是凸函数,则g ( x ) = \sup_{y ∈A}f (x, y )是凸函数 5.若对每个yA,f(x,y)关于x是凸函数,g(x)=supyAf(x,y)是凸函数
6. 给定函数 g : R n → R 和 h : R → R , 令 f ( x ) = h ( g ( x ) ) ,若 g 是凸函数 , h 是凸函数且单调不减 , 那么 f 是凸函数;若 g 是凹函数, h 是凸函数且单调不增,那么 f 是凸函数 6.给定函数 g : R^n → R 和 h : R → R,令 f ( x ) =h ( g ( x )) ,若g 是凸函数,h 是凸函数且单调不减,那么 f 是凸函数;若 g是凹函数,h 是凸函数且单调不增,那么 f 是凸函数 6.给定函数g:RnRh:RR,f(x)=h(g(x)),若g是凸函数,h是凸函数且单调不减,那么f是凸函数;若g是凹函数,h是凸函数且单调不增,那么f是凸函数
7. 给定函数 g : R n → R k , h : R k → R , f ( x ) = h ( g ( x ) ) = h ( g 1 ( x ) , g 2 ( x ) , ⋅ ⋅ ⋅ , g k ( x ) ) . 若 g i 是凸函数, h 是凸函数且关于每个分量单调不减,那么 f 是凸函数;若 g i 是凹函数, h 是凸函数且关于每个分量单调不增,那么 f 是凸函数 7.给定函数 g: R^n → R^k ,h : R^k → R, f ( x ) = h ( g ( x )) = h ( g_1 ( x ) , g_2( x ) , · · · , g_k ( x )) . 若 g_i 是凸函数,h 是凸函数且关于每个分量单调不减,那么 f 是凸函数;若g_i 是凹函数,h 是凸函数且关于每个分量单调不增,那么 f 是凸函数 7.给定函数g:RnRk,h:RkR,f(x)=h(g(x))=h(g1(x),g2(x),⋅⋅⋅,gk(x)).gi是凸函数,h是凸函数且关于每个分量单调不减,那么f是凸函数;若gi是凹函数,h是凸函数且关于每个分量单调不增,那么f是凸函数
8. 若 f ( x , y ) 关于 ( x , y ) 整体是凸函数 , C 是凸集 , 则 g ( x ) = inf ⁡ y ∈ C f ( x , y ) 是凸函数 8.若 f ( x, y ) 关于 ( x, y )整体是凸函数,C 是凸集,则g ( x ) = \inf_{y ∈ C} f ( x, y )是凸函数 8.f(x,y)关于(x,y)整体是凸函数,C是凸集,g(x)=infyCf(x,y)是凸函数
9. 定义函数 f : R n → R 的透视函数 g : R n × R → R , g ( x , t ) = t f ( x t ) , d o m g = { ( x , t ) ∣ x t ∈ d o m f , t > 0 } . 若 f 是凸函数 , 则 g 是凸函数 9.定义函数 f : R n →R 的透视函数 g : R^n × R → R,g(x,t) = tf ( {\frac{x}{t}} ),dom g= \{(x,t)|\frac{x}{t}\in dom{f},t > 0\}.若 f 是凸函数,则 g 是凸函数 9.定义函数f:RnR的透视函数g:Rn×RRg(xt)=tf(tx)domg={(xt)txdomft>0}.f是凸函数,g是凸函数

  • 凸函数的性质

1.连续性:凸函数不一定是连续函数,但是在其定义域中内点处是连续的
2.凸下水平集:凸函数的所有下水平集都为凸集
3.二次下界: f ( y ) ⩾ f ( x ) + ∇ f ( x ) T ( y − x ) + m 2 ∥ y − x ∥ 2 , ∀ x , y ∈ d o m f f ( y ) ⩾ f ( x ) + ∇ f ( x ) ^T ( y − x ) + \frac{m}{2}∥ y − x ∥^2,∀ x, y ∈ dom f f(y)f(x)+f(x)T(yx)+2myx2x,ydomf

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值