[bzoj2186]沙拉公主的困惑 欧拉函数+逆元

题目链接:bzoj2186

—————————————-

概述

题目大意如下。

给定两个正整数 n m,问有多少个 x 满足1xn!  gcd(i,m!)=1.  答案对 R 取模,题目有多组数据.(1m,n10000000, R1e9+10).

—————————————-

题解

这题真的值得一做,作者想了一晚上才想出大致思路,第二天才写成代码。

记答案为 Ans ,则有:

Ans=i=1n![gcd(m!,i)=1].

乍一看这个式子,似乎已经整理的差不多了,没办法进一步转化。事实上单看这个式子也的确没什么好的转化方法,那么如何解决这个问题呢?

先给出一条结论:

i=1k×m[gcd(m,i)=1]=k×φ(m).

证明:

  • 我们可以先证明在 1 ~ 2×m之间与 m 互质的数有2×φ(m)个。

  • 已知在1 ~ m 中与m互质的数共有 φ(m) 个,设它们是 p1p2pφ(m) ,显然对于任意的 pi 都有 gcd(pi,m)=1

  • 既然 pi 都与 m 互质,那pi+m还与 m 互质吗?答案是肯定的。

  • 我们现在想验证gcd(pi+m,m)是否为1,那么可以利用辗转相除法,得到 gcd(pi+m,m)=gcd(m,(m+pi)mod m)=gcd(m,pi)=1. 验证完毕。

  • 所以我们得知: pi 与m互质,那么 pi+m 也与 m 互质。

  • 那是否存在整数q{pi+m},且 gcd(q,m)=1 呢?

    • 答案是否定的。我们可以由上面的验证的结果反证,若 q m互质,则 qm 也与 m 互质,那么qm一定属于 {pi} ,所以 q 一定属于{pi+m}.

    • 所以在 1 ~ 2×m中,不存在整数 q 使得qm{pi} q m互质,故与 m 互质的数一共2×φ(m)个。

    • 以此类推,在 1  ~  3×m 中共有 3×φ(m) 个…… 1  ~  k×φ(m) 中一共有 k×φ(m) 个。

    • 证明完毕。

所以,题目就是在求: φ(m!)×n!m!. ···········(1)

我们将 m! 质因数分解:

m!=i=1totprii.

那么我们可以对(1)式进行转化:

Ans=n!m!×φ(m!)= n!m!×m!×i=1totpi1pi= n!×i=1totpi1pi.

由于 m!=mi=1i ,所以 m! 的所有质因子都小于等于 m ,故我们只需要求得1 ~ m 之间所有质数即可。至于阶乘,预处理就行了。

综上:

Ans=n!×i=1totpi1pi.(mod R)

不过这题我真的想要吐槽,我的写法是:线性筛质数之后,再记录一个“前缀积”记录 ni=1pi1pi 方便计算答案,结果TLE。卡常无果之后,将long long改成int结果跑的飞快。所以我得到结论:卡常不如卡空间。

—————————————-

代码

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<ctime>
#define ll long long
#define For(i,j,k) for(register int i=j; i<=(int)k; ++i)
#define Forr(i,j,k) for(register int i=j; i>=(int)k; --i)
#define INF 0x3f3f3f3f
using namespace std;

const int maxn = 10000000+5;

int T, R, n, m, Ans, tot;
int f[maxn], inv[maxn], pri[maxn>>3], num[maxn];
bool vis[maxn];

inline void file(){
    freopen("a.in", "r", stdin);
    freopen("a.out", "w", stdout);
}

inline void read(int &x){
    char c;
    while((c=getchar())<'0' || c>'9');
    x = c-'0';
    while((c=getchar())>='0' && c<='9')
        x = x*10+c-'0';
}//数据较多,读入优化. 

void ext_gcd(int a, int b, int &x, int &y){
    if(!b){
        x = 1,  y = 0;
        return;
    }
    ext_gcd(b, a%b, x, y);
    int temp = x;
    x = y;
    y = temp-a/b*y;
}

inline int get_inv(int temp){
    int x, y;
    ext_gcd(temp, R, x, y);
    if(x < 0)   x += R;
    return x;
}//扩展欧几里得求逆元 

inline void get_f(){
    inv[0] = inv[1] = f[0] = f[1] = 1;
    For(i, 2, maxn-5)
        f[i] = (ll)f[i-1]*i%R;
}

inline void get_pri(){
    tot = 0;
    For(i, 2, maxn-5){  
        if(!vis[i]){
            pri[++ tot] = i;
            inv[i] = get_inv(i);
        }
        for(register ll j=1,x; j<=tot&&(x=i*pri[j])<=maxn-5; ++j){
            vis[x] = true;
            if(i%pri[j] == 0)   break;
        }
    }
}

inline void get_num(){
    num[1] = 1;
    For(i, 2, maxn-5){
        num[i] = num[i-1];
        if(!vis[i])
            num[i] = (ll)num[i] * (i-1)%R * inv[i]%R;
    }
}

inline void init(){
    get_f();//预处理阶乘. 
    get_pri();//线性筛质数. 
    get_num();//预处理小于等于m的质数的贡献. 
}

int main(){
    read(T), read(R);

    init();
    while(T --){
        read(n), read(m);

        printf("%d\n", (ll)f[n]*num[m]%R);//计算答案. 
    }
    return 0;
}

—————————————-

小结

这题的结论不太容易想到,但一旦发现了结论,那么问题迎刃而解,所以这题权当积累经验了。
不过,卡常效果不如卡空间这一点我是真的无fuck说。

—————————————-

wrote by miraclejzd.

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值