首先,n!是m!的倍数,那么小于n!与m!互素的数的个数就是phi【m!】*n!/m!//这里需要用到逆元
首先我们想到,m!=1*2*3.......*m-1*m。实际上phi 【m!】就是从这些因子中转移出来,注意这些因子包括了所有相乘的出m!的质数,也就是说,把所有
phi【i】(i<m)相乘一定会有质数对与一个数phi的贡献中的p-1(只可意会,不可言传(这个大蒟蒻语言太烂了)),但是其他的phi,也会贡献p-1的情况,那么预处理的时候处理一下就好,保证所有的合数,都不会出现p-1的贡献,就是都是p*p*p*p出来的,不会有p*p*p*(p-1)的情况,因为m!中的质数已经包含这种情况了
明天再更新
不写逆元会TLE,并且,题目中已经说了,mod为质数,方便判断逆元都是可行的
思路证明
若gcd(a,b)=1,则易证gcd(a+b,b)=1
证明:gcd(a,b)=1 =>a,b没有公共约数 假设gcd(a+b,b)=k(k!=1)
则k是b的约数,又k是(a+b)的约数,因此k是a的约数,与假设矛盾。
所以我们可以讲题目所求即n!以内与m!互质的数的个数转换为
φ(m!)*(n!)/(m!) %p(φ是欧拉函数,φ(x)表示比x小的与x互质的数的个数)化简整理后,(φ(x)=∏(pi-1)/pi pi为x的质因数)即为
n!*∏(pi-1)/pi
所以我们要预处理出质数,阶乘还有逆元。
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdlib>
using namespace std;
typedef long long ll;
int p[10000050],phi[12000050];
int n;
bool b[12000050];
void init(int n)
{
phi[1]=1;
for (int i=2;i<=n;i++)
{
if (!b[i])
{
p[++p[0]]=i;
phi[i]=i-1;
}
for (int j=1;j<=p[0]&&i*p[j]<=n;j++)
{
b[i*p[j]]=true;
if (phi[i]!=i-1)
phi[i*p[j]]=phi[i]*p[j];
else phi[i*p[j]]=i*p[j];
if (i%p[j]==0) break;
}
}
}
ll ans[10500000],jc[10500000];
void exgcd(ll a,ll b,ll &d,ll &x,ll &y)
{
if (b==0){d=a;x=1;y=0;return ;}
exgcd(b,a%b,d,y,x);y-=x*(a/b);
}
ll ny(ll a,ll n)
{
ll x,y,d;
exgcd(a,n,d,x,y);
return ((x%n)+n)%n;
}
int main()
{
int t;
ll mod;
scanf("%d%lld",&t,&mod);
init(10000000);
ans[0]=1;
for (int i=1;i<=10000000;i++) ans[i]=ans[i-1]*phi[i]%mod;
jc[0]=1;
for (int i=1;i<=10000000;i++) jc[i]=jc[i-1]*i%mod;
while (t--)
{
int n,m;
scanf("%d%d",&n,&m);
ll an=ans[m];
an=an*jc[n]%mod*ny(jc[m],mod)%mod;
printf("%lld\n",an);
}
return 0;
}