- 博客(12)
- 收藏
- 关注
原创 python代码实现Bottleneck Generalized Assignment Problems
代码实现Bottleneck Generalized Assignment Problems
2024-03-29 19:13:06
382
1
原创 李宏毅机器学习|生成对抗网络Generative Adversarial Network (GAN)|学习笔记(2)|GAN理论介绍与WGAN
文章目录前言1 Our Objective2 Generative Adversarial Network (GAN)GeneratorDiscriminatorBasic Idea of GANAlgorithm结果展示总结前言之前老早就听说了GAN,然后对这个方法还不是很了解,想在今后的论文中应用它。因此来学习下李宏毅讲的GAN,记个笔记。视频地址1 Our Objective在Generator里面,我们的目标是由Generator产生的分布(叫做PGP_GPG)和真正的data数据的
2021-09-09 21:30:41
653
1
原创 李宏毅机器学习|生成对抗网络Generative Adversarial Network (GAN)|学习笔记(1)|GAN基本概念介绍
文章目录前言1 Generation2 Generative Adversarial Network (GAN)GeneratorDiscriminatorBasic Idea of GANAlgorithm结果展示总结前言之前老早就听说了GAN,然后对这个方法还不是很了解,想在今后的论文中应用它。因此来学习下李宏毅讲的GAN,记个笔记。视频地址1 Generation之前的神经网络的模型大多是给定x,然后通过Nertwork来给定一个y。但是Generation是给定X和一个简单分布的Z(
2021-09-08 11:01:21
1012
原创 李宏毅机器学习|图神经网络Graph Nerual Networks(GNN)|学习笔记
文章目录前言1 Introduction2 使用步骤1.引入库2.读入数据总结前言最近看的论文里面主要是就是图神经网络Graph Nerual Networks,然后就来学习下李宏毅机器学习中的图神经网络的内容,记个笔记。1 IntroductionGNN简单来说就是Graph + Nerual Networks,关键问题就是将图的结构和图中每个节点和边的特征转化为一般的神经网络的输入(张量)。示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。2 使用
2021-09-05 21:29:17
3218
原创 论文阅读|2020NeurIPS|Learning to Dispatch for Job Shop Scheduling via Deep Reinforcement Learning
作者单位信息南洋理工大学、山东大学、新加波国立大学、新加波制造技术学院文章目录作者单位信息Abstract1 Introduction2 Related Work3 Preliminaries4 Method4.1 Markov Decision Process FormulationStateActionState transitionRewardPolicy4.2 Parameterizing the PolicyGraph embeddingAction selection4.3 Learnin
2021-08-30 15:51:56
4480
11
原创 Job Shop调度问题的析取图表示
文章目录前言一、析取图背景二、析取图表示法简介三、析取图性质总结前言在看论文 “Learning to Dispatch for Job Shop Scheduling via Deep Reinforcement Learning”的时候发现需要用到Job Shop的析取图表示,因此本文就对析取图进行下描述。参考图书:制造过程智能优化调度算法及其应用一、析取图背景二、析取图表示法简介三、析取图性质总结提示:这里对文章进行总结:例如:以上就是今天要讲的内容,本文仅仅简单介绍了pa.
2021-08-29 19:15:40
5982
6
原创 Latex 公式被压扁过小
这两天在排版论文,在表格中出现了以下这类情况可以看到,相对于11行的公式,10行对应的除法公式被压扁了,很小。只需要在 \frac 前面加上 \displaystyle 即可。修改后的效果如下:
2021-08-09 17:49:06
7997
7
原创 神经语言程序学(Neruo Linguistic Programming)理解层次
本文旨在帮助大家认识世界,认识自我。本文参考的文章厉害的人遇到问题时的思维模式与普通人之间差别在哪? - 谢春霖的回答 - 知乎 。本文是对这篇文章的一个简单的自我总结和理解,属于转载的内容,只是其中加入了自己的一些理解。1.神经语言程序学(Neruo Linguistic Programming)理解层次简述开门见山,神经语言程序学(NLP)理解层级的概念如下:神经语言程序学(NLP)是由理查德·班德勒和约翰·格林德在1976年创办的一门学问,美国前总统克林顿、微软领袖比尔盖茨、大导演斯皮尔博
2021-07-17 22:19:16
13107
3
原创 特征选择之Fisher Score算法思想及其python代码实现
一、算法思想1、特征选择特征选择是去除无关紧要或庸余的特征,仍然还保留其他原始特征,从而获得特征子集,从而以最小的性能损失更好地描述给出的问题。特征选择方法可以分为三个系列:过滤式选择、包裹式选择和嵌入式选择的方法 。本文介绍的Fisher Score即为过滤式的特征选择算法。关于过滤式的特征算法系列,可参考我的其他文章。特征选择之卡方检验特征选择之互信息2、Fisher score特征选择中的Fisher ScoreFisher Score是特征选择的有效方法之一, 其主要思想是鉴别性
2021-07-16 17:10:54
17043
21
原创 特征选择之卡方检验(chisquare)算法思想及其python代码实现
一、算法思想1、特征选择特征选择是去除无关紧要或庸余的特征,仍然还保留其他原始特征,从而获得特征子集,从而以最小的性能损失更好地描述给出的问题。特征选择方法可以分为三个系列:过滤式选择、包裹式选择和嵌入式选择的方法 。本文介绍的卡方检验即为过滤式的特征选择算法。关于过滤式的特征算法系列,可参考我的其他文章。特征选择之互信息特征选择之Fisher Score2、卡方检验卡方检验介绍卡方是由英语"Chi_Square"音译而来,Chi是希腊字母X(读作kai),所以卡方又能写成 x2x^2x
2021-07-16 17:09:13
17909
7
原创 特征选择之互信息(mutual information)算法思想及其python代码实现
一、算法思想1、特征选择特征选择是去除无关紧要或庸余的特征,仍然还保留其他原始特征,从而获得特征子集,从而以最小的性能损失更好地描述给出的问题。特征选择方法可以分为三个系列:过滤式选择、包裹式选择和嵌入式选择的方法 。本文介绍的互信息(mutual information)即为过滤式的特征选择算法。关于过滤式的特征算法系列,可参考我的其他文章。特征选择之卡方检验特征选择之Fisher Score2、互信息互信息介绍定义:两个随机变量的互信息(mutual information)是变量间
2021-07-16 17:08:41
50388
13
原创 Python源文件(.py)及Python项目打包成可执行文件(.exe)的一些总结(主要针对一些坑)
****欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。新的改变我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:全新的界面设计 ,将会带...
2019-07-06 15:58:45
2025
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人