[Noip2004]合并果子
目录
Description
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。
多多决定把所有的果子合成一堆。
每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出
所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有3种果子,数目依次为1,2,9。可以先将 1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并又得到新的堆,数目为12,耗费体力为 12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。
Input
包括两行,第一行是一个整数n(1 <= n <= 10000),表示果子的种类数。第二行包含n个整数,用空格分隔第i个整数ai(1 <= ai <= 20000)是第i种果子的数目。
Output
包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于2^31。
Sample Input
3
1 2 9
Sample Output
15
方法一(堆)
思路
因为n堆果子需要(n-1)次合并成一堆,并且每堆合并的体力耗费值都是正数,所以每次都应该把两堆权值小的果子合并。
因为需要不断地取最小值,所以可以使用堆(小根堆)。
代码
#include<bits/stdc++.h>
using namespace std;
int n,m,ans=0,x,y;
priority_queue<int,vector<int>,greater<int> >d;//小根堆
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&m);
d.push(m);
}
while(true)
{
x=d.top();
d.pop();
y=d.top();
d.pop();//两个较小值
ans=ans+x+y;
if(d.empty())//已经合并成一堆
{
printf("%d",ans);
return 0;
}
d.push(x+y);//把新的一堆果子加入堆
}
return 0;
}
方法二(队列)
思路
1.因为n堆果子需要(n-1)次合并成一堆,并且每堆合并的体力耗费值都是正数,所以每次都应该把两堆权值小的果子合并。
2.因为每一堆果子的权值都是正的,所以每合并一次,花费的体力都会比之前的多。
我们可以使用两个上升的队列,第一个队列存储原有的果子堆,第二个队列存储合并而成的果子堆。每次都选择两个队列中两堆较小的果子,把它们合并,并把新合并的果子堆加入第二个队列的队列尾(因为已经得出的第2点结论,所以我们可以直接加入,不需要维护队列上升的性质)。
代码
#include<bits/stdc++.h>
using namespace std;
int n,num1[101001],num2[101001],k,head1=1,tail1=n,head2=1,tail2=0/*开始时num2队列里只有0个数字*/,ans=0;
void findnum()
{
k=0;
for(int i=1;i<=2;i++)
if(num1[head1]<num2[head2])
{
k=k+num1[head1];
head1++;
}
else
{
k=k+num2[head2];
head2++;
}
return ;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&num1[i]);
sort(num1+1,num1+1+n);//把第一个队列从小到大排序
memset(num2,127,sizeof(num2));//把第二个队列的数字设为无穷大
num1[n+1]=num2[12];
for(int i=1;i<=n-1;i++)//*n堆果子需要(n-1)次合并成一堆
{
findnum();//找两个最小值
ans=ans+k;
tail2++;
num2[tail2]=k;//把新合并的一堆果子加入第二个队列
}
printf("%d",ans);
return 0;
}