SalvatioN

编程一路碎碎念

【Python数据分析之pandas06】层次化索引

层次化索引    Pandas层次化索引将对象的索引分层,以便调用。s1 = pd.Series(range(1,11),index=[['a','a','a','b','b','b','c','c','d','d'],[1,2,3,1,2,3,1,2,2,3]]) s1 ''' a 1 ...

2018-03-19 17:20:48

阅读数 139

评论数 0

【Python数据分析之pandas05】处理缺失化数据

    首先,Python用.isnull的方法判断对象元素是否为NaN(缺失值)。s1 = pd.Series(['one','two',np.nan,'three']) s1.isnull() ''' 0 False 1 False 2 True 3 False dt...

2018-03-18 13:38:34

阅读数 90

评论数 0

【Python数据分析之pandas04】数学方法

统计与汇总    pandas对象的统计基本与numpy的数学方法差不多,不过pandas数组都是基于没有缺失数据的情况下构建的,即当对象中存在NAN值的时候,NaN值将会被自动排除,除非整个切片或对象都是NaN。    pandas对象的sum方法:data = pd.DataFrame([[1...

2018-03-17 14:55:17

阅读数 106

评论数 0

重归算法

    既然决定在这条路上走过去,就不得不面对这座大山。今后尽量保证每天都做题,遇到不同类型的题目就放上来,也为自己今后考研面试或者工作面试提供些许帮助。    第一天,上手一个简单的。    给定一个序列,求其最长连续子序列的和。#include <stdio.h&...

2018-03-17 11:05:19

阅读数 52

评论数 0

【Python数据分析之pandas03】数据结构的基本功能--2

算数运算和数据对齐    pandas一个强大的功能是,它可以对不同索引的对象进行算数运算。s1 = pd.Series([1,2,3,4],index=['a','b','c','d']) s1 ''' a 1 b 2 c 3 d 4 dtype: int64 ''' ...

2018-03-16 18:04:50

阅读数 76

评论数 0

【Python数据分析之pandas02】数据结构的基本功能--1

重新索引    Series和DataFrame在创建时可以对其index属性进行修改(DataFrame中index修改行属性)。创建后需要对index修改需要用到reindex方法。s1 = pd.Series([1,2,3],index=['c','a','b']) s1.reindex([...

2018-03-15 19:30:46

阅读数 35

评论数 1

【Python数据分析之pandas01】两个常用的数据结构

Series    - series可以看做是一个定长的有序字典,与一维数组形式相同,区别是series的索引可以是任意数据类型。    - series本身拥有一个name属性,它的index也有自己的name属性(这条性质为下文中series传入DataFrame提供基础)。    - 传入:...

2018-03-15 08:48:53

阅读数 61

评论数 0

【Python数据分析之Numpy03】线性代数

线性代数相关函数    一下所列的函数都包含在numpy.linalg函数里    diag:返回对角线元素或将一维数组转化为方阵。np.diag([1,2,3,4,5]) ''' array([[1, 0, 0, 0, 0], [0, 2, 0, 0, 0], [0,...

2018-03-12 19:02:10

阅读数 50

评论数 0

【Python数据分析之Numpy02】利用数据进行数据处理

矢量化计算    概念是:用数组表达式代替循环。    例:计算点(x,y)到原点的长度。首先介绍一个函数,np.meshgrid(*x,*y)。这个函数接收两个数组*x,*y,对于这两个数组上的所有元素,进行一一对应,生成两个矩阵,两个矩阵相同位置上的元素就是点的x和y坐标。points = n...

2018-03-11 18:12:08

阅读数 62

评论数 0

计算机专业要不要考研

   这个问题困扰了我很久很久,所幸看到这篇文章。不能说茅塞顿开,但总算不至于在黑暗中苦苦摸索。特此转载,与和我有相同困扰的大学生们分享。   你说:“他们都有很强的开发能力,只是不太喜欢读书,也只是希望混个学历对今后在岗位上晋升有好处”,我可以向你保证,你所说的人绝对不是开发能力很强的人。因为,...

2018-03-11 16:37:50

阅读数 3363

评论数 0

【Python数据分析工具之Numpy01】数组创建ndarray

创建数组    np.array(*list):以list创建一个数组list1 = [1,2,3,4,5] arr1 = np.array(list1) print(arr1) //输出结果:[1 2 3 4 5]     np.empty(*shape):创建一个没有任何具体值的数组(但是数组...

2018-03-09 21:09:34

阅读数 110

评论数 0

【机器学习数学基础之概率论与统计05】多元随机向量及其分布

几种常见的分布    联合分布     联合分布很难描述清楚,智能给出概念。但是在相互独立的随机变量中,它们联合分布是它们各自分布的乘积。    对于连续型随机变量,加上积分就可以了。    边缘分布    在二维情况下的直观解释:    条件分布    二维情况下的条件分布:        实际...

2018-03-08 11:02:19

阅读数 336

评论数 0

【机器学习数学基础之概率论与统计04】非参数估计

    非参数估计指不知道分布类型,对样本进行模型估计。一般只用在一维和二维。直方图估计    具体概念详见课件:                                                                                            ...

2018-03-07 20:52:52

阅读数 109

评论数 0

【机器学习数学基础之概率论与统计03】抽样分布

两个概念    独立同分布样本:当X1,X2,...,Xn相互独立且具有相同的分布函数F的时候,称X1,X2,...,Xn为独立同分布样本,记为X1,X2,...,Xn ~ F.    抽样分布:X1,X2,...,Xn为独立同分布样本(IID),其均值和方差为μ和σ²。那么对于这些样本有样本均值...

2018-03-07 16:10:17

阅读数 187

评论数 0

【机器学习--线性回归01】线性回归模型

    等了很久,终于进入机器学习环节了。开始前只想说一句话:数学一定一定要学好!!!没有学完概率的我今天开头真的是看的昏昏欲睡,就算是现在也只能大概理解其原理,等抓紧时间学完概率,再来好好咀嚼一下这部分内容。最后给自己一碗鸡汤:从菜鸟走向大神,这是道路。目标函数    对于线性回归模型,它的目标...

2018-03-06 23:01:09

阅读数 67

评论数 0

【机器学习数学基础之概率论02】随机变量的分布函数及单值

连续性随机变量的分布函数    分布函数(CDF):F(x)=P(X≤x)    概率密度(pdf):p(a<x≤b)=∫(a,b)p(x)dx    两者关系:p(x)=F'(x)        *连续性随机变量在某一点的概率均为0        *对于连续性随机变量的概率...

2018-03-06 08:38:20

阅读数 71

评论数 0

【机器学习数学基础之概率论01】贝叶斯公式

概率的三个公理    1.事件A的概率是一个非负实数:P(A)≥0。    2.合法命题(必然事件)的概率为1。    3.对两两不相交(互斥)事件,有。条件概率    联合概率:P(A,B)=P(A|B)*P(B)    条件概率:P(A|B)=P(A,B)/P(B)        *给定任意B...

2018-03-05 21:22:43

阅读数 86

评论数 0

【机器学习数学基础之矩阵03】线性回归

线性回归(最小二乘法)    一维模型:对于直角坐标系中一系列样本点(x,y),找到合适的a,b,使得f(x)=ax+b成立,并且f(x)~=y。实际上,线性回归的过程就是寻找a,b的过程,而判定最优解的方法就是寻找误差最小值,即:  。arg min是机器学习术语,表示让arg成立的min的值。...

2018-03-05 08:53:44

阅读数 84

评论数 0

【机器学习数学基础之矩阵02】矩阵求导

多元函数导数    对于n维函数 ,y本身没有导数,但其对于每一个分量都有偏导,于是有如下定义:        梯度向量:,其性质类似与一元函数的一阶导。        Hessian矩阵:            *值得注意的是,因为偏导顺序不影响结果,所以Hessian矩阵是一个实对称矩阵。最速...

2018-03-04 22:29:29

阅读数 1058

评论数 0

【机器学习数学基础--矩阵01】线性空间

范数    定义:是一个描述线性空间的度量,可以理解为二维空间的长度。    如||x1-x2||表示向量x1,x2之间的距离。    *Frobenius范数:机器学习常用范数。     即:矩阵所有元素先取平方和,再开平方。特征分解    特征值:满足公式:  ,其中 λ 为特征值,x为A的对...

2018-02-27 15:42:56

阅读数 56

评论数 0

提示
确定要删除当前文章?
取消 删除