【机器学习数学基础之概率论02】随机变量的分布函数及单值

本文深入探讨了随机变量的分布函数,包括连续性和离散型随机变量的分布特点,如分布函数(CDF)、概率密度(pdf)和概率质量(pmf)。此外,还详细介绍了期望的概念,它是随机变量值乘上其概率的总和,讨论了期望的线性运算、加法规则和乘法规则等性质。
摘要由CSDN通过智能技术生成

连续性随机变量的分布函数

    分布函数(CDF):F(x)=P(X≤x)

    概率密度(pdf):p(a<x≤b)=∫(a,b)p(x)dx

    两者关系:p(x)=F'(x)

        *连续性随机变量在某一点的概率均为0

        *对于连续性随机变量的概率密度,可以简单理解为概率

离散型随机变量的分布函数

     分布函数(CDF):F(x)=P(X≤x)

     概率质量(pmf):p(x)=P(X=x)

        *离散性随机变量虽然只在某几个点发生,但对于分布函数来说,任一点都有值。

期望

    定义:随机变量值乘上其概率的总和(概率加权平均)

    连续型随机变量期望&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值