欧拉路径与欧拉回路

目录

无向图欧拉回路存在充要条件证明

引理1

必要性

充分性

无向图欧拉通路存在充要条件证明

必要性

充分性

有向图欧拉回路存在充要条件证明

引理2

必要性

充分性

有向图欧拉通路存在充要条件证明

必要性

充分性

概念

求路径或者回路算法

Hierholzer算法

Fleury算法

例题


无向图欧拉回路存在充要条件:连通且所有顶点的度都是偶数

无向图欧拉通路存在充要条件:连通且度为奇数的顶点个数为0或2

有向图欧拉回路存在充要条件:连通且所有顶点出度等于入度

有向图欧拉通路存在充要条件:连通且,至多一个顶点入度=出度+1和一个顶点出度=入度+1,其他顶点出度=入度

无向图欧拉回路存在充要条件证明

引理1

若无向图所有顶点的度大于等于2,则存在回路

证明:

      考虑路径P:v1 v2 v3....vn 为图中最长的路径

      与vn相连的点必然在P上(否则假设u没被加入,则v1 v2... vn u这条路径更长,矛盾)

      假设u!=v_{n-1} 但是与vn相连,则回路为 u ->P ->vn

大致感觉就是下面这张图(忽略V1的度不是偶数)

必要性

因为每一个顶点,进去一次就会出来一次,对度的贡献是2,所以是偶数

充分性

每个顶点的度为偶数,则必然能找到一条回路(根据引理),

如果这个回路就是欧拉回路,则显然成立,否则

    删除这个回路(忽略孤立点),删除这个回路后的图必然有顶点与刚刚删的回路有公共点,从这个点出发再删回路

    重复这个过程,直到没有点了

    将点连起来,就是欧拉路径了

大概感觉如下

无向图欧拉通路存在充要条件证明

如果没有度为奇数的顶点,则根据上面的证明能找到欧拉回路,也就找到了欧拉通路

如果有2个度为奇数的顶点

必要性

因为除了起点和终点,每一个顶点,进去一次就会出来一次,对度的贡献是2所以其他点度为偶数,

起点多出去了一次,终点多进来了一次,所以起点和终点度为奇数

充分性

连接两个度为奇数的顶点,这样所有的顶点的度为偶数,然后就能找到欧拉回路,接着删除加的那个边,就找到通路了

 

有向图欧拉回路存在充要条件证明

引理2

若有向图出度等于入度,则存在回路

证明:

      考虑路径P:v1 v2 v3....vn 为图中最长的路径

      vn的出边对应的点必然在P上(否则假设u没被加入,则v1 v2... vn u这条路径更长,矛盾)

      则回路为 u ->P ->vn

 

必要性

因为每一个顶点,进去一次就会出来一次,入度+1,出度+1,所以入度等于出度

充分性

每个顶点出度等于入度,则必然能找到一条回路(根据引理2),

如果这个回路就是欧拉回路,则显然成立,否则

    删除这个回路(忽略孤立点),删除这个回路后的图必然有顶点与刚刚删的回路有公共点,从这个点出发再删回路

    重复这个过程,直到没有点了

    将点连起来,就是欧拉路径了

 

有向图欧拉通路存在充要条件证明

如果没有一个顶点入度=出度+1和一个顶点出度=入度+1,则根据上面的证明能找到欧拉回路,也就找到了欧拉通路

如果有

必要性

因为除了起点和终点,每一个顶点,进去一次就会出来一次,出度+1,入度+1,

起点多出去了一次,终点多进来了一次,所以一个顶点入度=出度+1和一个顶点出度=入度+1

充分性

一个顶点入度=出度+1,设为u

一个顶点出度=入度+1,设为v

连接v和u,这样所有的顶点出度=入度,然后就能找到欧拉回路,接着删除加的那个边,就找到通路了

概念

欧拉图:这个图有欧拉回路

半欧拉图:这个图没有欧拉回路,但是有欧拉路径

求路径或者回路算法

Hierholzer算法

在证明有欧拉路径或者欧拉回路的情况下,dfs,边走边删边,如果没有边可以走,就把顶点加入栈

证明:

引理1:如果该图为欧拉图,则栈底的必定为起点。

            如果该图为半欧拉图,则栈底是终点。

证明:

如果一个顶点入栈,说明他没有边可以走了,并且,起点和当前点失去了奇数度,其他的顶点是失去偶数度(因为一进一出,-2度)

对于欧拉图,如果顶点入栈,且不是起点,那么说明当前点具有奇数度,那么与欧拉图只有偶数度的顶点矛盾,所以当前点是起点(也就是说你走了个回路)

对于半欧拉图,这个点必然不是起点,因为如果是起点,说明起点是偶数度,与起点终点是奇数度矛盾,但是这个点要入栈,且是奇数度,所以必然是终点

 

引理2:如果该图为欧拉图(半欧拉图),则栈中的自底到顶第i个点就是欧拉回路(半欧拉图)上的第n-i+1个点(i从1开始)

证明:

当i=1时,引理1已经证明过了

考虑i=2,

对于半欧拉图,起点失去了奇数度,其他点失去了偶数度,在走完终点后,也失去了偶数度,也就是说,现在这个图,是个欧拉图

对于欧拉图,所有点都失去了偶数度,也是个欧拉图

假设dfs过程中,终点的上一个点是v2,那么问题就转化成v2为起点,走一个欧拉回路,那根据引理1,v2会成为第二个入栈点

 

i>2时同理

 

说明:这个引理2证明可能不严谨,如果大佬们有好的证明,请告诉我

 

有了引理1和2,其实就证明完了

 

下面这个代码,假设你已经判断存在欧拉路径或者回路了,那直接边走边dfs,结束后输出栈里的内容,就是一个欧拉路径或者回路了

stack<int> s;
void dfs(int u){
    for(int i=0;i<n;++i){
        if(dist[u][i]){
            --dist[u][i];
            --dist[i][u];
            dfs(i);
        }
    }
    s.push(u);
}

Fleury算法

简单来说就是除非无路可走,否则不走桥

证明和代码哪天有空了补一下,感觉这算法没有上面那个好用

例题

洛谷P2731

https://www.luogu.com.cn/record/44415599

这题要走字典序最小,其他的没什么好注意的

#include<cstdio>
#include<stack>
using namespace std;
const int N=505;
int dist[N][N];
int degree[N];
int min_n=N,max_n=0;
stack<int> s;
void dfs(int u){
    for(int i=min_n;i<=max_n;++i){
        if(dist[u][i]){
            --dist[u][i];
            --dist[i][u];
            dfs(i);
        }
    }
    s.push(u);
}
int main(){
    int m;
    scanf("%d",&m);
    while(m--){
        int u,v;
        scanf("%d%d",&u,&v);
        ++dist[u][v];
        ++dist[v][u];
        ++degree[u];
        ++degree[v];
        if(u<min_n)min_n=u;
        if(u>max_n)max_n=u;
        if(v<min_n)min_n=v;
        if(v>max_n)max_n=v;
    }
    int x=min_n;
    for(int i=min_n;i<=max_n;++i){
        if(degree[i]&1){
            x=i;
            break;
        }
    }
    dfs(x);
    while(!s.empty()) {
        printf("%d\n", s.top());
        s.pop();
    }
    return 0;
}

 

P1341

https://www.luogu.com.cn/problem/P1341

这题是有欧拉回路打欧拉回路,没有就打欧拉路径,再没有就输出无解,然后也要字典序最小

#include<cstdio>
#include<stack>
using namespace std;
const int N=55;
bool visit[N];
int parent[N];
int degree[N];
int dist[N][N];
int min_n=N,max_n;
int find_parent(int x){
    int p=x;
    while(parent[p]!=p)p=parent[p];
    while(x!=p){
        int t=parent[x];
        parent[x]=p;
        x=t;
    }
    return p;
}
void unite(int x,int y){
    x=find_parent(x);
    y=find_parent(y);
    parent[y]=x;
}
stack<char> st;
void dfs(int u){
    for(int i=min_n;i<=max_n;++i){
        if(dist[u][i]){
            --dist[u][i];
            --dist[i][u];
            dfs(i);
        }
    }
    if(u<26)st.push('A'+u);
    else st.push(u-26+'a');
}
int main(){
    for(int i=0;i<N;++i)parent[i]=i;
    int m;
    scanf("%d",&m);
    char s[5];
    while(m--){
        scanf("%s",s);
        int u,v;
        if(s[0]>='A'&&s[0]<='Z')u=s[0]-'A';
        else u=s[0]-'a'+26;
        if(s[1]>='A'&&s[1]<='Z')v=s[1]-'A';
        else v=s[1]-'a'+26;
        visit[u]=true;
        visit[v]=true;
        ++dist[u][v];
        ++dist[v][u];
        if(u<min_n)min_n=u;
        if(u>max_n)max_n=u;
        if(v<min_n)min_n=v;
        if(v>max_n)max_n=v;
        ++degree[u];
        ++degree[v];
        unite(u,v);
    }

    bool flag=true;
    int t=find_parent(min_n);
    int start=-1;
    int cnt=0;
    for(int i=min_n;i<=max_n;++i){
        if(visit[i]){
            if(find_parent(i)!=t){
                flag=false;
                break;
            }
            if(degree[i]&1){
                ++cnt;
                if(cnt>2){
                    flag=false;
                    break;
                }
                if(start==-1)start=i;
            }
        }
    }
    if(flag&&(cnt==0||cnt==2)){
        if(start==-1)start=min_n;
        dfs(start);
        while(!st.empty()){
            printf("%c",st.top());
            st.pop();
        }
    }
    else{
        printf("No Solution\n");
    }
    return 0;
}

 

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值