Introduction to nonlinear optimization第一章习题

1.1 Show that ∥ ⋅ ∥ 1 2 \|\cdot\|_{\frac{1}{2}} 21 is not a norm.

解:
x = ( 1 0 ) , y = ( 1 1 ) \mathbf{x}=\begin{pmatrix} 1\\ 0\\ \end{pmatrix},\mathbf{y}=\begin{pmatrix} 1\\ 1\\ \end{pmatrix} x=(10),y=(11)
∥ x + y ∥ 1 2 = ( 2 + 1 ) 2 = 3 + 2 2 \|\mathbf{x}+\mathbf{y}\|_\frac{1}{2}=(\sqrt{2}+1)^2=3+2\sqrt{2} x+y21=(2 +1)2=3+22
∥ x ∥ 1 2 + ∥ y ∥ 1 2 = 1 + 2 < ∥ x + y ∥ 1 2 \|\mathbf{x}\|_\frac{1}{2}+\|\mathbf{y}\|_\frac{1}{2}=1+\sqrt{2}<\|\mathbf{x}+\mathbf{y}\|_\frac{1}{2} x21+y21=1+2 <x+y21
所以不是

1.2 Prove that for any x ∈ R n \mathbf{x}\in\mathbb{R}^n xRn one has
∥ x ∥ ∞ = lim ⁡ p → ∞ ∥ x ∥ p \|\mathbf{x}\|_{\infty}=\lim\limits_{p\to\infty}\|\mathbf{x}\|_{p} x=plimxp

解:
lim ⁡ p → ∞ ∥ x ∥ p = lim ⁡ p → ∞ ∑ i = 1 n ∣ x i ∣ p p = max ⁡ ∣ x i ∣ = ∥ x ∥ ∞ \begin{aligned} &\quad \lim\limits_{p\to\infty}\|\mathbf{x}\|_{p}\\ &=\lim\limits_{p\to\infty}\sqrt[p]{\sum_{i=1}^{n}\left|x_i\right|^p}\\ &=\max \left|x_i\right|\\ &=\|\mathbf{x}\|_{\infty} \end{aligned} plimxp=plimpi=1nxip =maxxi=x
1.3 Show that for any x , y , z ∈ R n \mathbf{x},\mathbf{y},\mathbf{z}\in\mathbb{R}^n x,y,zRn
∥ x − z ∥ ≤ ∥ x − y ∥ + ∥ y − z ∥ \|\mathbf{x}-\mathbf{z}\|\le \|\mathbf{x}-\mathbf{y}\|+\|\mathbf{y}-\mathbf{z}\| xzxy+yz

解:
∥ x − z ∥ = ∥ x − y + y − z ∥ ≤ ∥ x − y ∥ + ∥ y − z ∥ \begin{aligned} & \quad \|\mathbf{x}-\mathbf{z}\|\\ &=\|\mathbf{x}-\mathbf{y}+\mathbf{y}-\mathbf{z}\|\\ &\le \|\mathbf{x}-\mathbf{y}\|+\|\mathbf{y}-\mathbf{z}\| \end{aligned} xz=xy+yzxy+yz
1.4 Prove the Cauchy–Schwarz inequality (Lemma 1.5).Show that equality holds if and only if the vectors x \mathbf{x} x and y \mathbf{y} y are linearly dependent.

解.
∑ i = 1 n ( x i z − y i ) 2 = ∑ i = 1 n ( x i 2 z 2 − 2 x i y i z + y i 2 ) = ( ∑ i = 1 n x i 2 ) z 2 − 2 ( ∑ i = 1 n x i y i ) z + ∑ i = 1 n y i 2 ≥ 0 \begin{aligned} &\quad \sum_{i=1}^{n}(x_iz-y_i)^2\\ &=\sum_{i=1}^{n}(x_i^2z^2-2x_iy_iz+y_i^2)\\ &=\left(\sum_{i=1}^{n}x_i^2\right) z^2-2\left(\sum_{i=1}^{n}x_iy_i\right) z+\sum_{i=1}^{n}y_i^2\\ &\ge0 \end{aligned} i=1n(xizyi)2=i=1n(xi2z22xiyiz+yi2)=(i=1nxi2)z22(i=1nxiyi)z+i=1nyi20
⇒ Δ = 4 ( ∑ i = 1 n x i y i ) 2 − 4 ( ∑ i = 1 n x i 2 ) ( ∑ i = 1 n y i 2 ) ≤ 0 ⇒ ∣ x T y ∣ ≤ ∥ x ∥ ∥ y ∥ \Rightarrow \Delta=4\left(\sum_{i=1}^{n}x_iy_i\right)^2-4\left(\sum_{i=1}^{n}x_i^2\right)\left(\sum_{i=1}^{n}y_i^2\right)\le0\\ \Rightarrow \left|\mathbf{x}^T\mathbf{y}\right|\le\|\mathbf{x}\|\|\mathbf{y}\| Δ=4(i=1nxiyi)24(i=1nxi2)(i=1nyi2)0xTyxy
当且仅当 z x = y z\mathbf{x}=\mathbf{y} zx=y时, Δ = 0 \Delta=0 Δ=0, ∣ x T y ∣ = ∥ x ∥ ∥ y ∥ \left|\mathbf{x}^T\mathbf{y}\right|=\|\mathbf{x}\|\|\mathbf{y}\| xTy=xy

1.5 Suppose that R m \mathbb{R}^m Rm and R n \mathbb{R}^n Rn are equipped with norms ∥ ⋅ ∥ b \|\cdot \|_b b and ∥ ⋅ ∥ a \|\cdot \|_a a, respectively.Show that the induced matrix norm ∥ ⋅ ∥ a , b \|\cdot \|_{a,b} a,bsatisfies the triangle inequality. That is,for any A , B ∈ R m × n \mathbf{A},\mathbf{B}\in\mathbb{R}^{m\times n} A,BRm×n the inequality
∥ A + B ∥ a , b ≤ ∥ A ∥ a , b + ∥ B ∥ a , b \|\mathbf{A}+\mathbf{B}\|_{a,b}\le\|\mathbf{A}\|_{a,b}+\|\mathbf{B}\|_{a,b} A+Ba,bAa,b+Ba,b
holds.

解:
∥ A + B ∥ a , b = max ⁡ ∥ x ∥ a ≤ 1 ∥ ( A + B ) x ∥ b ∥ x ∥ a ≤ max ⁡ ∥ x ∥ a ≤ 1 ∥ A x ∥ b + ∥ B x ∥ b ∥ x ∥ a ≤ max ⁡ ∥ x ∥ a ≤ 1 ∥ A x ∥ b ∥ x ∥ a + max ⁡ ∥ y ∥ a ≤ 1 ∥ B y ∥ b ∥ y ∥ a = ∥ A ∥ a , b + ∥ B ∥ a , b \begin{aligned} &\quad \|\mathbf{A}+\mathbf{B}\|_{a,b}\\ &=\max_{\|\mathbf{x}\|_a\le 1}\frac{\|\left(\mathbf{A}+\mathbf{B}\right)\mathbf{x}\|_b}{\|\mathbf{x}\|_a}\\ &\le \max_{\|\mathbf{x}\|_a\le 1}\frac{\|\mathbf{A}\mathbf{x}\|_b+\|\mathbf{B}\mathbf{x}\|_b}{\|\mathbf{x}\|_a}\\ &\le \max_{\|\mathbf{x}\|_a\le 1}\frac{\|\mathbf{A}\mathbf{x}\|_b}{\|\mathbf{x}\|_a}+\max_{\|\mathbf{y}\|_a\le 1}\frac{\|\mathbf{B}\mathbf{y}\|_b}{\|\mathbf{y}\|_a}\\ &=\|\mathbf{A}\|_{a,b}+\|\mathbf{B}\|_{a,b} \end{aligned}\\ A+Ba,b=xa1maxxa(A+B)xbxa1maxxaAxb+Bxbxa1maxxaAxb+ya1maxyaByb=Aa,b+Ba,b

1.6 Let ∥ ⋅ ∥ \|\cdot \| be a norm on R n \mathbb{R}^n Rn.Show that the norm function f ( x ) = ∥ x ∥ f\left(\mathbf{x}\right)=\|\mathbf{x}\| f(x)=x is a continuous function over R n \mathbb{R}^n Rn.

解:
对于 ∀ ϵ > 0 , ∃ δ > 0 \forall \epsilon>0,\exists \delta>0 ϵ>0,δ>0,
0 < ∥ x − y ∥ < δ 0<\|\mathbf{x}-\mathbf{y}\|<\delta 0<xy<δ
∣ f ( x ) − f ( y ) ∣ = ∣ ∥ x ∥ − ∥ y ∥ ∣ ≤ ∥ x − y ∥ < ϵ \left|f\left(\mathbf{x}\right)-f\left(\mathbf{y}\right)\right|=\left|\|\mathbf{x}\|-\|\mathbf{y}\|\right|\le\|\mathbf{x}-\mathbf{y}\|<\epsilon f(x)f(y)=xyxy<ϵ

δ = ϵ \delta=\epsilon δ=ϵ即可

1.7 (attainment of the maximum in the induced norm definition). Suppose that R m \mathbb{R}^m Rm and R n \mathbb{R}^n Rn are equipped with norms ∥ ⋅ ∥ b \|\cdot\|_b b and ∥ ⋅ ∥ a \|\cdot\|_a a, respectively, and let A ∈ R m × n \mathbf{A}\in\mathbb{R}^{m\times n} ARm×n. Show that there exists x ∈ R n \mathbf{x}\in\mathbb{R}^n xRn such that ∥ x ∥ a ≤ 1 \|\mathbf{x}\|_a\le 1 xa1 and ∥ A x ∥ b = ∥ A ∥ a , b \|\mathbf{Ax}\|_b=\|\mathbf{A}\|_{a,b} Axb=Aa,b.

解:
连续函数在紧集中可以取到最大值,所以成立

1.8 Suppose that R m \mathbb{R}^m Rm and R n \mathbb{R}^n Rn are equipped with norms ∥ ⋅ ∥ b \|\cdot \|_b b and ∥ ⋅ ∥ a \|\cdot \|_a a,respectively.Show that the induced matrix norm ∥ ⋅ ∥ a , b \|\cdot\|_{a,b} a,b can be computed by the formula
∥ A ∥ a , b = max ⁡ x { ∥ A x ∥ b : ∥ x ∥ a = 1 } \|\mathbf{A}\|_{a,b}=\max_{\mathbf{x}}\left\{\|\mathbf{Ax}\|_b: \|\mathbf{x}\|_a=1\right\} Aa,b=xmax{Axb:xa=1}

解:
∥ A ∥ a , b = max ⁡ ∥ x ∥ a ≤ 1 ∥ A x ∥ b ∥ x ∥ a = max ⁡ ∥ x ∥ a ≤ 1 ∥ A x ∥ x ∥ a ∥ b = max ⁡ ∥ y ∥ a = 1 ∥ A y ∥ b \begin{aligned} &\quad \|\mathbf{A}\|_{a,b}\\ &=\max_{\|\mathbf{x}\|_a\le 1}\frac{\|\mathbf{Ax}\|_b}{\|\mathbf{x}\|_a}\\ &=\max_{\|\mathbf{x}\|_a\le 1}\|\mathbf{A}\frac{\mathbf{x}}{\|\mathbf{x}\|_a}\|_b\\ &=\max_{\|\mathbf{y}\|_a= 1}\|\mathbf{A}\mathbf{y}\|_b\\ \end{aligned} Aa,b=xa1maxxaAxb=xa1maxAxaxb=ya=1maxAyb

1.9 Suppose that R m \mathbb{R}^m Rm and R n \mathbb{R}^n Rn are equipped with norms ∥ ⋅ ∥ b \|\cdot \|_b b and ∥ ⋅ ∥ a \|\cdot \|_a a,respectively.Show that the induced matrix norm ∥ ⋅ ∥ a , b \|\cdot\|_{a,b} a,b can be computed by the formula
∥ A ∥ a , b = max ⁡ x ≠ 0 ∥ A x ∥ b ∥ x ∥ a \|\mathbf{A}\|_{a,b}=\max_{\mathbf{x}\neq 0}\frac{\|\mathbf{Ax}\|_b}{\|\mathbf{x}\|_a} Aa,b=x=0maxxaAxb

解:
max ⁡ x ≠ 0 ∥ A x ∥ b ∥ x ∥ a = max ⁡ x ≠ 0 ∥ A x ∥ x ∥ a ∥ b = max ⁡ ∥ y ∥ a = 1 ∥ A y ∥ b = ∥ A ∥ a , b \begin{aligned} &\quad \max_{\mathbf{x}\neq 0}\frac{\|\mathbf{Ax}\|_b}{\|\mathbf{x}\|_a}\\ &=\max_{\mathbf{x}\neq 0}\|\mathbf{A}\frac{\mathbf{x}}{\|\mathbf{x}\|_a}\|_b\\ &=\max_{\|\mathbf{y}\|_a= 1}\|\mathbf{A}\mathbf{y}\|_b\\ &=\|\mathbf{A}\|_{a,b} \end{aligned} x=0maxxaAxb=x=0maxAxaxb=ya=1maxAyb=Aa,b

1.10 Let A ∈ R m × n , B ∈ R n × k \mathbf{A}\in\mathbb{R}^{m\times n},\mathbf{B}\in\mathbb{R}^{n\times k} ARm×n,BRn×k and assume that R m , R n \mathbb{R}^m,\mathbb{R}^n Rm,Rn, and R k \mathbb{R}^k Rk are equipped with the norms ∥ ⋅ ∥ c , ∥ ⋅ ∥ b \|\cdot\|_c,\|\cdot\|_b c,b, and ∥ ⋅ ∥ a \|\cdot\|_a a,respectively. Prove that
∥ A B ∥ a , c ≤ ∥ A ∥ b , c ∥ B ∥ a , b \|\mathbf{AB}\|_{a,c}\le \|\mathbf{A}\|_{b,c}\|\mathbf{B}\|_{a,b} ABa,cAb,cBa,b

解:
∥ A B ∥ a , c = max ⁡ ∥ x ∥ a ≤ 1 ∥ A B x ∥ c ∥ x ∥ a ≤ max ⁡ ∥ x ∥ a ≤ 1 ∥ A ∥ b , c ∥ B x ∥ b ∥ x ∥ a = ∥ A ∥ b , c ∥ B ∥ a , b \begin{aligned} &\quad \|\mathbf{AB}\|_{a,c}\\ &=\max_{\|\mathbf{x}\|_a\le 1}\frac{\|\mathbf{ABx}\|_{c}}{\|\mathbf{x}\|_{a}}\\ &\le\max_{\|\mathbf{x}\|_a\le 1}\frac{\|\mathbf{A}\|_{b,c}\|\mathbf{Bx}\|_{b}}{\|\mathbf{x}\|_{a}}\\ &=\|\mathbf{A}\|_{b,c}\|\mathbf{B}\|_{a,b} \end{aligned} ABa,c=xa1maxxaABxcxa1maxxaAb,cBxb=Ab,cBa,b

1.11 Prove the formula of the ∞ \infty -matrix norm given in Example 1.9.

解:
∥ A ∥ ∞ = max ⁡ ∥ x ∥ ∞ = 1 ∥ A x ∥ ∞ = max ⁡ ∥ x ∥ ∞ = 1 max ⁡ i ∣ ∑ j = 1 n a i j x j ∣ ≤ max ⁡ ∥ x ∥ ∞ = 1 max ⁡ i ∑ j = 1 n ∣ a i j x j ∣ ≤ max ⁡ i ∑ j = 1 n ∣ a i j ∣ \begin{aligned} &\quad \|\mathbf{A}\|_\infty\\ &=\max_{\|\mathbf{x}\|_\infty=1}\|\mathbf{Ax}\|_\infty\\ &=\max_{\|\mathbf{x}\|_\infty=1}\max_{i}\left|\sum_{j=1}^{n}a_{ij}x_{j}\right|\\ &\le\max_{\|\mathbf{x}\|_\infty=1}\max_{i}\sum_{j=1}^{n}\left|a_{ij}x_{j}\right|\\ &\le\max_{i}\sum_{j=1}^{n}\left|a_{ij}\right| \end{aligned} A=x=1maxAx=x=1maximaxj=1naijxjx=1maximaxj=1naijxjimaxj=1naij

x 0 = ( x 1 , ⋯   , x n ) \mathbf{x_0}=\left(x_1,\cdots,x_n\right) x0=(x1,,xn)
其中 x j = { ∣ a i j ∣ a i j , a i j ≠ 0 1 , a i j = 0 x_j=\begin{cases} \frac{\left|a_{ij}\right|}{a_{ij}},&a_{ij}\neq 0\\ 1,&a_{ij}=0 \end{cases} xj={aijaij,1,aij=0aij=0
∥ A x 0 ∥ ∞ = max ⁡ i ∑ j = 1 n ∣ a i j ∣ \|\mathbf{Ax_0}\|_\infty=\max_{i}\sum_{j=1}^{n}\left|a_{ij}\right| Ax0=imaxj=1naij

1.12 Let A ∈ R m × n \mathbf{A}\in\mathbb{R}^{m\times n} ARm×n.Prove that
(i) 1 n ∥ A ∥ ∞ ≤ ∥ A ∥ 2 ≤ m ∥ A ∥ ∞ \frac{1}{\sqrt{n}}\|\mathbf{A}\|_\infty\le\|\mathbf{A}\|_2\le\sqrt{m}\|\mathbf{A}\|_\infty n 1AA2m A
(ii) 1 m ∥ A ∥ 1 ≤ ∥ A ∥ 2 ≤ n ∥ A ∥ 1 \frac{1}{\sqrt{m}}\|\mathbf{A}\|_1\le\|\mathbf{A}\|_2\le\sqrt{n}\|\mathbf{A}\|_1 m 1A1A2n A1

解:
(i)
利用
∥ x ∥ ∞ ≤ ∥ x ∥ 2 ≤ n ∥ x ∥ ∞ \|\mathbf{x}\|_\infty\le\|\mathbf{x}\|_2\le \sqrt{n}\|\mathbf{x}\|_\infty xx2n x
(可以用 最大<=求和<=n*最大来证明)

于是
1 n ∥ A ∥ ∞ = 1 n max ⁡ x ≠ 0 ∥ A x ∥ ∞ ∥ x ∥ ∞ ≤ max ⁡ x ≠ 0 ∥ A x ∥ 2 ∥ x ∥ 2 = ∥ x ∥ 2 ≤ max ⁡ x ≠ 0 m ∥ A x ∥ ∞ ∥ x ∥ ∞ = m ∥ A ∥ ∞ \begin{aligned} &\quad \frac{1}{\sqrt{n}}\|\mathbf{A}\|_\infty\\ &=\frac{1}{\sqrt{n}}\max_{\mathbf{x}\neq0}\frac{\|\mathbf{Ax}\|_\infty}{\|\mathbf{x}\|_\infty}\\ &\le \max_{\mathbf{x}\neq0}\frac{\|\mathbf{Ax}\|_2}{\|\mathbf{x}\|_2}=\|\mathbf{x}\|_2\\ &\le \max_{\mathbf{x}\neq0}\frac{\sqrt{m}\|\mathbf{Ax}\|_\infty}{\|\mathbf{x}\|_\infty}\\ &=\sqrt{m}\|\mathbf{A}\|_\infty \end{aligned} n 1A=n 1x=0maxxAxx=0maxx2Ax2=x2x=0maxxm Ax=m A
(ii)
利用
1 m ∥ x ∥ 1 ≤ ∥ x ∥ 2 ≤ ∥ x ∥ 1 \frac{1}{\sqrt{m}}\|\mathbf{x}\|_1\le\|\mathbf{x}\|_2\le \|\mathbf{x}\|_1 m 1x1x2x1
(左边用算术平均<=平方平均,右边可以数学归纳)

于是
1 m ∥ A ∥ 1 = 1 m max ⁡ x ≠ 0 ∥ A x ∥ 1 ∥ x ∥ 1 ≤ max ⁡ x ≠ 0 ∥ A x ∥ 2 ∥ x ∥ 2 = ∥ x ∥ 2 ≤ max ⁡ x ≠ 0 ∥ A x ∥ 1 ∥ x ∥ 1 n = n ∥ A ∥ 1 \begin{aligned} &\quad \frac{1}{\sqrt{m}}\|\mathbf{A}\|_1\\ &=\frac{1}{\sqrt{m}}\max_{\mathbf{x}\neq0}\frac{\|\mathbf{Ax}\|_1}{\|\mathbf{x}\|_1}\\ &\le \max_{\mathbf{x}\neq0}\frac{\|\mathbf{Ax}\|_2}{\|\mathbf{x}\|_2}=\|\mathbf{x}\|_2\\ &\le \max_{\mathbf{x}\neq0}\frac{\|\mathbf{Ax}\|_1}{\frac{\|\mathbf{x}\|_1}{\sqrt{n}}}\\ &=\sqrt{n}\|\mathbf{A}\|_1 \end{aligned} m 1A1=m 1x=0maxx1Ax1x=0maxx2Ax2=x2x=0maxn x1Ax1=n A1
1.13 Let A ∈ R m × n \mathbf{A}\in\mathbb{R}^{m\times n} ARm×n Show that
(i) ∥ A ∥ = ∥ A T ∥ \|\mathbf{A}\|=\|\mathbf{A}^T\| A=AT(here ∥ ⋅ ∥ \|\cdot\| is the spectral norm),
(ii) ∥ A ∥ F 2 = ∑ i = 1 n λ i ( A T A ) \|\mathbf{A}\|_F^2=\sum_{i=1}^{n}\lambda_i\left(\mathbf{A}^T\mathbf{A}\right) AF2=i=1nλi(ATA)

解:
(i)
( I B 0 I ) ( 0 0 A A B ) = ( B A 0 A 0 ) ( I B 0 I ) \begin{pmatrix} I&B\\ 0&I \end{pmatrix}\begin{pmatrix} 0&0\\ A&AB \end{pmatrix}=\begin{pmatrix} BA&0\\ A&0 \end{pmatrix}\begin{pmatrix} I&B\\ 0&I \end{pmatrix} (I0BI)(0A0AB)=(BAA00)(I0BI)
所以 ( 0 0 A A B ) ∼ ( B A 0 A 0 ) \begin{pmatrix} 0&0\\ A&AB \end{pmatrix}\sim \begin{pmatrix} BA&0\\ A&0 \end{pmatrix} (0A0AB)(BAA00)
因为 ( 0 0 A A B ) \begin{pmatrix} 0&0\\ A&AB \end{pmatrix} (0A0AB)的特征值为 A B AB AB的特征值,以及几个0
( B A 0 A 0 ) \begin{pmatrix} BA&0\\ A&0 \end{pmatrix} (BAA00)的特征值为 B A BA BA的特征值,以及几个0
所以 A B AB AB非零特征值与 B A BA BA非零特征值相同

所以 A A T \mathbf{A}\mathbf{A}^T AAT的非零特征值与 A T A \mathbf{A}^T\mathbf{A} ATA的非零特征值相同
∥ A ∥ 2 = λ 1 ( A T A ) = λ 1 ( A A T ) = ∥ A T ∥ 2 \|\mathbf{A}\|_2=\sqrt{\lambda_1\left(\mathbf{A}^T\mathbf{A}\right)}=\sqrt{\lambda_1\left(\mathbf{A}\mathbf{A}^T\right)}=\|\mathbf{A}^T\|_2 A2=λ1(ATA) =λ1(AAT) =AT2
(ii)
∥ A ∥ F 2 = ∑ i = 1 m ∑ j = 1 n a i j 2 = t r ( A T A ) = ∑ i = 1 n λ i ( A T A ) \|\mathbf{A}\|_F^2=\sum_{i=1}^{m}\sum_{j=1}^{n}a_{ij}^2=tr\left(\mathbf{A}^T\mathbf{A}\right)=\sum_{i=1}^{n}\lambda_i\left(\mathbf{A}^T\mathbf{A}\right) AF2=i=1mj=1naij2=tr(ATA)=i=1nλi(ATA)
1.14 Let A ∈ R n × n \mathbf{A}\in\mathbb{R}^{n\times n} ARn×n be a symmetric matrix.Show that
max ⁡ x { x T A x : ∥ x ∥ 2 = 1 } = λ m a x ( A ) \max_{\mathbf{x}}\left\{\mathbf{x}^T\mathbf{Ax}:\|\mathbf{x}\|^2=1\right\}=\lambda_{max}\left(\mathbf{A}\right) xmax{xTAx:x2=1}=λmax(A)

解:
由瑞利商显然成立

1.15 Prove that a set U ⊆ R n U\subseteq \mathbb{R}^n URn is closed if and only if its complement U c U^c Uc is open.

解:
⇐ \Leftarrow 假设 U U U是闭的,取 x ∈ U c x\in U^c xUc,有 x ∉ U x\notin U x/U,所以 x x x不是 U U U的极限点。
因此存在 x x x的一个邻域 N N N,使得 U ∩ N = ∅ U\cap N=\empty UN=,
于是 N ⊂ U c N\subset U^c NUc,即 x x x U c U^c Uc的内点
于是 U c U^c Uc是开的

⇒ \Rightarrow 假设 U c U^c Uc是开的,假设 x x x U U U的一个极限点,那么 x x x的每一个邻域都包含 U U U的点,所以 x x x不是 U c U^c Uc的内点,所以 U U U是开的

1.16
(i)Let { A i } i ∈ I \left\{A_i\right\}_{i\in I} {Ai}iI be a collection of open sets where I I I is a given index set. Show that ∪ i ∈ I A i \cup_{i\in I} A_i iIAi is an open set. Show that if I I I is finite,then ∪ i ∈ I A i \cup_{i\in I} A_i iIAi is open.
(ii)Let { A i } i ∈ I \left\{A_i\right\}_{i\in I} {Ai}iI be a collection of closed sets where I I I is a given index set. Show that ∩ i ∈ I A i \cap_{i\in I} A_i iIAi is an closed set. Show that if I I I is finite,then ∩ i ∈ I A i \cap_{i\in I} A_i iIAi is closed.

解:
(i)
因为开集的所有点都是内点
取并集后,所有点依然是内点,所以成立
(ii)
取补集,然后由(i)和1.15题,成立

1.17 Give an example of open sets A i , i ∈ I A_i,i\in I Ai,iI for which ∩ i ∈ I A i \cap_{i\in I} A_i iIAi is not open

解:
∩ i = 1 ∞ ( − 1 i , 1 i ) = { 0 } \cap_{i=1}^{\infty}\left(-\frac{1}{i},\frac{1}{i}\right)=\left\{0\right\} i=1(i1,i1)={0}

1.18 Let A , B ⊆ R n A,B\subseteq \mathbb{R}^n A,BRn.Prove that c l ( A ∩ B ) ⊆ c l ( A ) ∩ c l ( B ) cl(A\cap B)\subseteq cl(A)\cap cl(B) cl(AB)cl(A)cl(B).Give an example in which the inclusion is proper.

解:
A ⊆ c l ( A ) A\subseteq cl(A) Acl(A)
B ⊆ c l ( B ) B\subseteq cl(B) Bcl(B)
所以 A ∩ B ⊆ c l ( A ) ∩ c l ( B ) A\cap B \subseteq cl(A)\cap cl(B) ABcl(A)cl(B)
因为 c l ( A ∩ B ) cl(A\cap B) cl(AB)是包含 A ∩ B A\cap B AB的所有闭包中最小的
c l ( A ) ∩ c l ( B ) cl(A)\cap cl(B) cl(A)cl(B)是闭集
所以
c l ( A ∩ B ) ⊆ c l ( A ) ∩ c l ( B ) cl(A\cap B)\subseteq cl(A)\cap cl(B) cl(AB)cl(A)cl(B)

A = ( 0 , 1 ) A=\left(0,1\right) A=(0,1)
B = ( 1 , 2 ) B=\left(1,2\right) B=(1,2)
c l ( A ∩ B ) = ∅ cl(A\cap B)=\empty cl(AB)=
c l ( A ) ∩ c l ( B ) = { 1 } cl(A)\cap cl(B)=\left\{1\right\} cl(A)cl(B)={1}
c l ( A ∩ B ) ⊂ c l ( A ) ∩ c l ( B ) cl(A\cap B)\subset cl(A)\cap cl(B) cl(AB)cl(A)cl(B)

1.19 Let A , B ⊆ R n A,B\subseteq \mathbb{R}^n A,BRn.Prove that i n t ( A ∩ B ) = i n t ( A ) ∩ i n t ( B ) int(A\cap B)=int(A)\cap int(B) int(AB)=int(A)int(B) and that i n t ( A ) ∪ i n t ( B ) ⊆ i n t ( A ∪ B ) int(A)\cup int(B) \subseteq int(A\cup B) int(A)int(B)int(AB).Show an example in which the latter inclusion is proper.

解:
x ∈ i n t ( A ∩ B ) x \in int(A\cap B) xint(AB),
于是 ∃ r > 0 , B ( x , r ) ⊂ A ∩ B \exists r>0,B(x,r)\subset A\cap B r>0,B(x,r)AB
所以 B ( x , r ) ⊂ A , B ( x , r ) ⊂ B ⇒ x ∈ i n t ( A ) , x ∈ i n t ( B ) ⇒ x ∈ i n t ( A ) ∩ i n t ( B ) B(x,r)\subset A,B(x,r)\subset B\Rightarrow x\in int(A),x\in int(B)\Rightarrow x\in int(A)\cap int(B) B(x,r)A,B(x,r)Bxint(A),xint(B)xint(A)int(B)
所以 i n t ( A ∩ B ) ⊆ i n t ( A ) ∩ i n t ( B ) int(A\cap B) \subseteq int(A)\cap int(B) int(AB)int(A)int(B)

x ∈ i n t ( A ) ∩ i n t ( B ) x\in int(A)\cap int(B) xint(A)int(B)
假设 ∃ r 1 > 0 , r 2 > 0 ,   s . t .   B ( x , r 1 ) ⊂ A , B ( x , r 2 ) ⊂ B \exists r_1>0,r_2>0,\ s.t.\ B(x,r_1)\subset A,B(x,r_2)\subset B r1>0,r2>0, s.t. B(x,r1)A,B(x,r2)B
r = min ⁡ { r 1 , r 2 } , B ( x , r ) ⊂ A , B ( x , r ) ⊂ B r=\min\left\{r_1,r_2\right\},B(x,r)\subset A,B(x,r)\subset B r=min{r1,r2},B(x,r)A,B(x,r)B
于是 B ( x , r ) ⊂ A ∩ B B(x,r)\subset A\cap B B(x,r)AB
所以 x ∈ i n t ( A ∩ B ) x\in int(A\cap B) xint(AB)
所以 i n t ( A ) ∩ i n t ( B ) ⊆ i n t ( A ∩ B ) int(A)\cap int(B) \subseteq int(A\cap B) int(A)int(B)int(AB)

⇒ i n t ( A ∩ B ) = i n t ( A ) ∩ i n t ( B ) \Rightarrow int(A\cap B)=int(A)\cap int(B) int(AB)=int(A)int(B)

x ∈ i n t ( A ) x\in int(A) xint(A)
∃ r > 0 , B ( x , r ) ⊂ A ⊂ A ∪ B \exists r>0,B(x,r)\subset A \subset A\cup B r>0,B(x,r)AAB
所以 x ∈ i n t ( A ∪ B ) x\in int(A\cup B) xint(AB)
所以 i n t ( A ) ⊆ i n t ( A ∪ B ) int(A)\subseteq int(A\cup B) int(A)int(AB)

x ∈ i n t ( B ) x\in int(B) xint(B)
同理 i n t ( B ) ⊆ i n t ( A ∪ B ) int(B)\subseteq int(A\cup B) int(B)int(AB)
⇒ i n t ( A ) ∪ i n t ( B ) ⊆ i n t ( A ∪ B ) \Rightarrow int(A)\cup int(B) \subseteq int(A\cup B) int(A)int(B)int(AB)

A = ( − ∞ , 0 ] , B = [ 0 , + ∞ ) A=(-\infty,0],B=[0,+\infty) A=(,0],B=[0,+)
i n t ( A ) ∪ i n t ( B ) = R \ { 0 } int(A)\cup int(B)=\mathbb{R}\backslash\left\{0\right\} int(A)int(B)=R\{0}
i n t ( A ∪ B ) = R int(A\cup B)=\mathbb{R} int(AB)=R
所以 ⇒ i n t ( A ) ∪ i n t ( B ) ⊂ i n t ( A ∪ B ) \Rightarrow int(A)\cup int(B) \subset int(A\cup B) int(A)int(B)int(AB)

  • 9
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值