线性代数

行列式

定义

n 2 n^{2} n2 个元素构成的 n n n 阶行列式为
∣ a i j ∣ n = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣   = ∑ p 1 p 2 ⋯ p n ( − 1 ) f ( p 1 p 2 ⋯ p n ) a 1 p 1 a 2 p 2 ⋯ a n p n \begin{array}{l} \quad\left|a_{i j}\right|_{n}=\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \end{array}\right| \\ \ \\ =\sum_{p_{1} p_{2} \cdots p_{n}}(-1)^{f\left(p_{1} p_{2} \cdots p_{n}\right)} a_{1 p_{1}} a_{2 p_{2}} \cdots a_{n p_{n}} \end{array} aijn=a11a21an1a12a22an2a1na2nann =p1p2pn(1)f(p1p2pn)a1p1a2p2anpn

其中 p 1 ∼ n p_{1 \sim n} p1n 1 ∼ n 1 \sim n 1n 的一个个排列。 f ( p 1 ∼ n ) f(p_{1\sim n}) f(p1n) 是排列的逆序对数量。

性质

n n n 阶行列式为 D = ∣ a i j ∣ n D=\left|a_{i j}\right|_{n} D=aijn,称行列式 ∣ a j i ∣ n \left|a_{j i}\right|_{n} ajin D D D 的转置行列式, 记作 D T D_{T} DT。有

  • D T = D D_{T}=D DT=D
  • 交换行列式 D D D 中任意两行得到 D 1 D_{1} D1, 则 D 1 = − D D_{1}=-D D1=D
  • 行列式 D D D 中某一行都乘上 k k k 得到 D 1 D_{1} D1, 则 D 1 = k D D_{1}=k D D1=kD
  • 如果行列式 D D D 的某一行上的每个数都可以拆成两个数的和,那么这个行列式等于这两个数的行列式之和。
  • 如果行列式 D D D 中有两行成比例,则这个行列式的值为 0 0 0
  • 行列式 D D D 的某一行加上另一行 i i i k × D i ( 0 < i < n ) k \times D_i(0 < i < n) k×Di(0<i<n),行列式的值不变。

代数余子式

n n n 阶行列式 D D D 中划去任意选定的 k k k 行和 k ( 0 < k < n ) k(0<k<n) k(0<k<n) 列后,余下的元素按原来顺序组成的 n − k n-k nk 阶行列式 M M M , 称为 M M M 是其中一个行列式 D D D k k k 阶余子式。

代数主子式去掉的行和列编号相同。

范德蒙德行列式

D n = ∣ 1 1 ⋯ 1 x 1 x 2 ⋯ x n x 1 2 x 2 2 ⋯ x n 2 ⋮ ⋮ ⋮ x 1 n − 1 x 2 n − 1 ⋯ x n n − 1 ∣ = ∏ 1 ≤ j < i ≤ n ( x i − x j ) D_{n}=\left|\begin{array}{cccc} 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{n} \\ x_{1}^{2} & x_{2}^{2} & \cdots & x_{n}^{2} \\ \vdots & \vdots & & \vdots \\ x_{1}^{n-1} & x_{2}^{n-1} & \cdots & x_{n}^{n-1} \end{array}\right|=\prod_{1 \leq j<i \leq n}\left(x_{i}-x_{j}\right) Dn=1x1x12x1n11x2x22x2n11xnxn2xnn1=1j<in(xixj)

用数学归纳法证明:

n = 2 n=2 n=2 时,范德蒙德行列式显然成立。

∣ 1 1 a 1 a 2 ∣ = a 2 − a 1 \left|\begin{array}{ll} 1 & 1 \\ a_{1} & a_{2} \end{array}\right|=a_{2}-a_{1} 1a11a2=a2a1

假设范德蒙德行列式对于 D n − 1 D_{n-1} Dn1 成立。对于 D n D_n Dn 阶行列式,我们对 D i , j D_{i,j} Di,j 减去 a 1 × a j i − 1 a_1 \times a_j^{i-1} a1×aji1。根据性质,行列式的值不变。

D n = ∣ 1 1 1 ⋯ 1 0 a 2 − a 1 a 3 − a 1 … a n − a 1 0 a 2 2 − a 1 a 2 a 3 2 − a 1 a 3 … a n 2 − a 1 a n … … … … … 0 a 2 n − 1 − a 1 a 2 n − 2 a 3 n − 1 − a 1 a 3 n − 2 … a n n − 1 − a 1 a n n − 2 ∣ D_{n}=\left|\begin{array}{cccc} 1 & 1 & 1 & \cdots & 1 \\ 0 & a_{2}-a_{1} & a_{3}-a_{1} & \ldots & a_{n}-a_{1} \\ 0 & a_{2}^{2}-a_{1} a_{2} & a_{3}^{2}-a_{1} a_{3} & \ldots & a_{n}^{2}-a_{1} a_{n} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & a_{2}^{n-1}-a_{1} a_{2}^{n-2} & a_{3}^{n-1}-a_{1} a_{3}^{n-2} & \ldots & a_{n}^{n-1}-a_{1} a_{n}^{n-2} \end{array}\right| Dn=10001a2a1a22a1a2a2n1a1a2n21a3a1a32a1a3a3n1a1a3n21ana1an2a1anann1a1ann2

删除第一行和第一列,得到新的一阶余子式,并将公因数提出。

D n = ∣ a 2 − a 1 a 3 − a 1 … a n − a 1 a 2 ( a 2 − a 1 ) a 3 ( a 3 − a 1 ) … a n ( a n − a 1 ) … … … … a 2 n − 2 ( a 2 − a 1 ) a 3 n − 2 ( a 3 − a 1 ) … a n n − 2 ( a n − a 1 ) ∣ D_{n}=\left|\begin{array}{cccc} a_{2}-a_{1} & a_{3}-a_{1} & \ldots & a_{n}-a_{1} \\ a_2(a_{2}-a_{1}) & a_3(a_{3}-a_{1}) & \ldots & a_n(a_{n}-a_{1}) \\ \ldots & \ldots & \ldots & \ldots \\ a_2^{n-2}(a_{2}-a_{1}) & a_3^{n-2}(a_{3}-a_{1}) & \ldots & a_n^{n-2}(a_{n}-a_{1}) \end{array}\right| Dn=a2a1a2(a2a1)a2n2(a2a1)a3a1a3(a3a1)a3n2(a3a1)ana1an(ana1)ann2(ana1)

把括号内和括外分开求

( a 2 − a 1 ) ( a 3 − a 1 ) … ( a n − a 1 ) ∣ 1 1 … 1 a 2 a 3 … a n … … … … a 2 n − 2 a 3 n − 2 … a n n − 2 ∣ \left(a_{2}-a_{1}\right)\left(a_{3}-a_{1}\right) \ldots\left(a_{n}-a_{1}\right)\left|\begin{array}{cccc} 1 & 1 & \ldots & 1 \\ a_{2} & a_{3} & \ldots & a_{n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{2}^{n-2} & a_{3}^{n-2} & \ldots & a_{n}^{n-2} \end{array}\right| (a2a1)(a3a1)(ana1)1a2a2n21a3a3n21anann2

可以发现右边是 D n − 1 D_{n-1} Dn1

( a 2 − a 1 ) ( a 3 − a 1 ) … ( a n − a 1 ) × ∏ 2 ≤ j < i ≤ n ( a i − a j ) = ∏ 1 ≤ j < i ≤ n ( a i − a j ) \left(a_{2}-a_{1}\right)\left(a_{3}-a_{1}\right) \ldots\left(a_{n}-a_{1}\right) \times \prod_{2 \leq j<i \leq n}\left(a_{i}-a_{j}\right) \\ = \prod_{1 \leq j<i \leq n}\left(a_{i}-a_{j}\right) (a2a1)(a3a1)(ana1)×2j<in(aiaj)=1j<in(aiaj)

证明完毕。

矩阵

矩阵加减法

只有两个规模相同的矩阵才能进行矩阵加减法。矩阵加减法满足结合律和交换律。

[ 1 4 2 2 0 0 ] + [ 0 0 5 7 5 0 ] = [ 1 + 0 4 + 0 2 + 5 2 + 7 0 + 5 0 + 0 ] = [ 1 4 7 9 5 0 ] \left[\begin{array}{lll} 1 & 4 & 2 \\ 2 & 0 & 0 \end{array}\right]+\left[\begin{array}{lll} 0 & 0 & 5 \\ 7 & 5 & 0 \end{array}\right]=\left[\begin{array}{lll} 1+0 & 4+0 & 2+5 \\ 2+7 & 0+5 & 0+0 \end{array}\right]=\left[\begin{array}{lll} 1 & 4 & 7 \\ 9 & 5 & 0 \end{array}\right] [124020]+[070550]=[1+02+74+00+52+50+0]=[194570]

数乘

2 × [ 1 8 − 3 4 − 2 5 ] = [ 2 × 1 2 × 8 2 × ( − 3 ) 2 × 4 2 × ( − 2 ) 2 × 5 ] = [ 2 16 − 6 8 − 4 10 ] 2 \times \left[\begin{array}{ccc} 1 & 8 & -3 \\ 4 & -2 & 5 \end{array}\right]=\left[\begin{array}{ccc} 2 \times 1 & 2 \times 8 & 2 \times (-3) \\ 2 \times 4 & 2 \times (-2) & 2 \times 5 \end{array}\right]=\left[\begin{array}{ccc} 2 & 16 & -6 \\ 8 & -4 & 10 \end{array}\right] 2×[148235]=[2×12×42×82×(2)2×(3)2×5]=[28164610]

矩阵乘法

两个矩阵 A A A B B B 它们的相乘为 C C C 那么记作 C = A B C = AB C=AB。两个矩阵能相乘的必要条件为左列等于右行。如果 n × m n \times m n×m 的矩阵与 m × m ′ m \times m' m×m 的矩阵相乘,得到的矩阵为 n × m ′ n \times m' n×m。对于两个规模相同的矩阵相乘

C i , p = ∑ k = 1 n b i , k × c k , p C_{i,p} = \sum_{k=1}^n b_{i,k} \times c_{k,p} Ci,p=k=1nbi,k×ck,p

[ 1 0 2 − 1 3 1 ] × [ 3 1 2 1 1 0 ] = [ ( 1 × 3 + 0 × 2 + 2 × 1 ) ( 1 × 1 + 0 × 1 + 2 × 0 ) ( − 1 × 3 + 3 × 2 + 1 × 1 ) ( − 1 × 1 + 3 × 1 + 1 × 0 ) ] = [ 5 1 4 2 ] \left[\begin{array}{ccc} 1 & 0 & 2 \\ -1 & 3 & 1 \end{array}\right] \times\left[\begin{array}{cc} 3 & 1 \\ 2 & 1 \\ 1 & 0 \end{array}\right]=\left[\begin{array}{cc} (1 \times 3+0 \times 2+2 \times 1) & (1 \times 1+0 \times 1+2 \times 0) \\ (-1 \times 3+3 \times 2+1 \times 1) & (-1 \times 1+3 \times 1+1 \times 0) \end{array}\right]=\left[\begin{array}{cc} 5 & 1 \\ 4 & 2 \end{array}\right] [110321]×321110=[(1×3+0×2+2×1)(1×3+3×2+1×1)(1×1+0×1+2×0)(1×1+3×1+1×0)]=[5412]

矩阵乘法满足结合律 A ( B C ) = ( A B ) C A(BC) = (AB)C A(BC)=(AB)C 但是不满足交换律 A B ≠ B A AB \not= BA AB=BA。满足左右分配律

( A + B ) C = A C + B C C ( A + B ) = C A + C B \begin{aligned} &(A+B) C=A C+B C\\ &C(A+B)=C A+C B \end{aligned} (A+B)C=AC+BCC(A+B)=CA+CB

单位矩阵

对于两个矩阵 A A A B B B,如果 A B = A AB = A AB=A 那么 B B B 单位矩阵。单位矩阵的对角线是 1 1 1 其它为 0 0 0

[ 1 0 0 0 1 0 0 0 1 ] \left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] 100010001

逆矩阵

对于 n × n n \times n n×n n n n 阶矩阵 A A A,如果存在一个 n n n 阶矩阵 B B B 使得 A B = B A = E AB = BA = E AB=BA=E E E E n n n 阶单位矩阵,那么称 A A A 为可逆矩阵, B B B A A A 的逆矩阵。 B B B 记作 A − 1 A^{-1} A1

A = [ − 2 1 4 − 3 ] , A − 1 = B = [ − 3 2 − 1 2 − 2 − 1 ] A=\left[\begin{array}{cc} -2 & 1 \\ 4 & -3 \end{array}\right], A^{-1} = B=\left[\begin{array}{cc} -\frac{3}{2} & -\frac{1}{2} \\ -2 & -1 \end{array}\right] A=[2413],A1=B=[232211]

如果 A A A 是可逆矩阵,那么 A A A 的逆矩阵是唯一的。

高斯消元法

矩阵快速幂和矩阵加速

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值