如何证明弹簧振子的震动周期与初始位置无关

本文通过微积分方法分析了弹簧振子的振动情况,指出无论振子初始位置如何,振动周期始终保持不变。利用二阶微分方程得出速度v与时间t的关系,并通过求解常数确定振动周期,证明了周期与初始位置无关,这一特性在计时工具设计中具有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如下图所示的一个与弹簧相连的小球,小球称为振子,弹簧的质量被忽略。弹簧的另一端与墙体相连。弹簧和振子都放在光滑(即摩擦力忽略不计)的水平平面上,弹簧处于松弛状态(既不拉伸也不压缩)。

现在把振子拉倒B点,然后松手,振子被弹簧拉扯,速度逐渐加快,直到经过O点。之后振子依靠惯性挤压弹簧,速度逐渐变慢到达C点后为零。之后振子就会在B、C之间来回振动。|BO| = |CO|成立。

假设振子的质量是m(千克),弹簧的弹性系数是k(牛顿/米),|BO|的长度等于c,我们的问题是:请用微积分的办法给出振子速度v和时间t之间的关系,并说明:无论振子的初始位置在哪里,其振动周期都是相同的。也就是说震动周期与振子的初始位置无关。这个性质经常被用来制作手表等计时工具。

解答

 说明

振子在任意时刻受到的弹簧的力f都与它和O点之间的位移s成正比,所以有:

根据牛顿第三运动定律,,其中a是加速度。于是有:

加速度a是速度v对时间t的导数,v是位移s对时间的导数。对上式等号两边分别求导,得:

这是一个二阶微分方程,且v的系数小于0,所以有:

                 (1)

其中b是一个常数。我们待会求解它。先看看振子经过O时的速度,显然此时振子的速度的绝对值最大。而上式中只有当:

时速度的绝对值最大。所以上式就是振子从B运动到O的时间,是振子来回振动的1/4周期,所以,弹簧振子的震动周期:

由于这个时间与振子的初始位置即c无关,所以无论振子的初始位置在哪里,其振动周期都是相同的。

现在来推导常数b。由于速度v相对于时间t的积分等于位移,所以有:

 所以有: 

所以:

代入速度公式(1)中,得:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

方林博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值