如下图所示的一个与弹簧相连的小球,小球称为振子,弹簧的质量被忽略。弹簧的另一端与墙体相连。弹簧和振子都放在光滑(即摩擦力忽略不计)的水平平面上,弹簧处于松弛状态(既不拉伸也不压缩)。
现在把振子拉倒B点,然后松手,振子被弹簧拉扯,速度逐渐加快,直到经过O点。之后振子依靠惯性挤压弹簧,速度逐渐变慢到达C点后为零。之后振子就会在B、C之间来回振动。|BO| = |CO|成立。
假设振子的质量是m(千克),弹簧的弹性系数是k(牛顿/米),|BO|的长度等于c,我们的问题是:请用微积分的办法给出振子速度v和时间t之间的关系,并说明:无论振子的初始位置在哪里,其振动周期都是相同的。也就是说震动周期与振子的初始位置无关。这个性质经常被用来制作手表等计时工具。
解答
说明
振子在任意时刻受到的弹簧的力f都与它和O点之间的位移s成正比,所以有:
根据牛顿第三运动定律,,其中a是加速度。于是有:
加速度a是速度v对时间t的导数,v是位移s对时间的导数。对上式等号两边分别求导,得:
这是一个二阶微分方程,且v的系数小于0,所以有:
(1)
其中b是一个常数。我们待会求解它。先看看振子经过O时的速度,显然此时振子的速度的绝对值最大。而上式中只有当:
时速度的绝对值最大。所以上式就是振子从B运动到O的时间,是振子来回振动的1/4周期,所以,弹簧振子的震动周期:
由于这个时间与振子的初始位置即c无关,所以无论振子的初始位置在哪里,其振动周期都是相同的。
现在来推导常数b。由于速度v相对于时间t的积分等于位移,所以有:
所以有:
所以:
代入速度公式(1)中,得: