机器学习
困熊TrappedBear
温故而知新
展开
-
决策树
机器学习中分类和预测算法的评估 准确率、速度、强壮性、可规模性、可解释性 什么是决策树/判定树(decision tree)? 判定树是一个类似流程图的树结构:其中,每个内部结点表示在一个属性上的测试,每个分支代表一个属性输出,而每个树叶结点代表类或类分布,数的最顶层是根结点。 构造决策树的基本算法 熵(entropy)的概念 1984年,香农提出了“信息熵”的概念,一条...原创 2019-08-03 11:39:46 · 215 阅读 · 0 评论 -
机器学习介绍
机器学习(Machine Learning) 机器学习是多领域交叉学科,涉及概率论、统计学、逼近论,凸分析,算法复杂度理论等多门学科,用来研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能。 机器学习定义为探究和开发一系列算法来如何是计算机不需要通过外部明显的指示,而可以自己通过数据来学习,建模,并利用建好的模型和新的输入来进行预测的学科。 学习表现为针对经验E(experi...原创 2019-08-03 11:39:41 · 466 阅读 · 0 评论 -
最邻近规则分类
最邻近规则分类(K-Nearest Neighbor)KNN算法 Cover和Hart在1968年提出了最初的邻近算法,它属于分类(classification)算法,输入基于实例的学习(instance-based learning), 懒惰学习(lazy learning)。 例子引入,对于电影类型的分类 将统一样本参数转换为坐标及类别 算法步骤 为了判断未知实例的类别...原创 2019-08-03 12:20:24 · 1554 阅读 · 0 评论