【深度学习目标检测】二十五、基于深度学习的花卉分类系统-含数据集、GUI和源码(python,yolov8)

文章介绍了如何利用深度学习的YOLOv8算法进行花卉分类,包括训练过程、数据集准备、模型配置和训练,以及该技术在园艺、保护和教育领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

设计花卉分类系统的原因主要有以下几点:

  1. 组织和识别:分类系统有助于组织和识别大量的花卉品种。通过将花卉按照特定的标准进行分类,可以更容易地找到、识别和区分不同的花卉。

  2. 科学研究:分类系统为科学家提供了研究花卉的基础框架。通过对花卉进行分类,科学家可以更好地理解花卉之间的亲缘关系、进化历程和生物多样性,从而推动植物学和相关领域的研究进展。

  3. 园艺和农业应用:对于园艺师和农民来说,花卉分类系统有助于选择适合特定环境和用途的花卉品种。通过了解花卉的分类信息,他们可以更有针对性地选择种植、繁殖和推广特定的花卉。

  4. 保护和资源管理:分类系统有助于保护濒危花卉品种和合理利用花卉资源。通过对花卉进行分类和评估,可以制定更有效的保护策略,确保濒危品种的生存和繁衍。同时,分类系统也有助于合理开发和利用花卉资源,满足人类对于观赏、药用、香料等方面的需求。

  5. 教育和普及:花卉分类系统还有助于教育和普及植物学知识。通过向公众展示花卉的分类信息和特点,可以提高人们对植物多样性的认识和兴趣,促进植物保护和可持续发展意识的提升。

综上所述,设计花卉分类系统对于组织识别、科学研究、园艺农业应用、保护和资源管理以及教育普及等方面都具有重要意义。

本文介绍了基于深度学习yolov8的行人检测计数系统,包括训练过程和数据准备过程,同时提供了推理的代码和GUI。

模型在线体验:模型乐园

检测结果如下图:

一、安装YoloV8

yolov8官方文档:主页 - Ultralytics YOLOv8 文档

安装部分参考:官方安装教程

1、安装pytorch

根据本机是否有GPU,安装适合自己的pytorch,如果需要训练自己的模型,建议使用GPU版本。

①GPU版本的pytorch安装

对于GPU用户,安装GPU版本的pytorch,首先在cmd命令行输入nvidia-smi,查看本机的cuda版本,如下图,我的cuda版本是12.4(如果版本过低,建议升级nvidia驱动):

打开pytorch官网,选择合适的版本安装pytorch,如下图,建议使用conda安装防止cuda版本问题出现报错:

②CPU版本pytorch安装

打开pytorch官网,选择CPU版本安装pytorch,如下图:

2、安装yolov8

在命令行使用如下命令安装:

pip install ultralytics

二、数据集准备

本文数据集来自互联网,花卉类别为5类:daisy/dandelion/roses/sunflowers/tulips,3006个训练集和664个验证集。

示例图片如下:

本文提供转换好的数据集,可以直接用于训练yolo模型:5类花卉分类yolov8格式数据集,该数据集包含五个类别:daisy/dandelion/roses/sunflowers/tu

三、模型配置及训练

1、数据集配置文件

使用yolov8分类模型无需配置文件。

2、训练模型

使用如下命令训练模型,数据文件路径更改为自己的路径,model根据自己的需要使用yolov8n/s/l/x版本,其他参数根据自己的需要进行设置:

yolo classify train project=flower name=train exist_ok data=D:\DeepLearning\datasets\csdn\flower_photos_yolov8 model=yolov8n-cls.pt epochs=10 imgsz=640 

3、验证模型

使用如下命令验证模型,相关路径根据需要修改:

yolo classify val project=flower name=val imgsz=640 model=face_age/train/weights/best.pt data=D:\DeepLearning\datasets\csdn\flower_photos_yolov8

精度如下:

val: Scanning D:\DeepLearning\datasets\csdn\flower_photos_yolov8\val... 664 images, 0 corrupt: 100%|██████████| 664/664 [00:00<?, ?it/s]
               classes   top1_acc   top5_acc: 100%|██████████| 42/42 [00:08<00:00,  4.98it/s]
                   all      0.938          1
Speed: 2.3ms preprocess, 2.6ms inference, 0.0ms loss, 0.0ms postprocess per image

四、界面开发

使用pyqt5开发gui界面,支持图片、视频、摄像头输入,支持导出到指定路径,其GUI如下图(完整GUI代码可在下方链接下载):

完整代码下载连接:基于yolov8的花卉分类系统,包含训练好的权重和推理代码,GUI界面,支持图片、视频、摄像头输入,支持检测结果导出

分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类花卉数据集分类
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

justld

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值