力扣8.29

76.最小覆盖子串

题目

给你一个字符串 s 、一个字符串 t 。返回 s 中涵盖 t 所有字符的最小子串。如果 s 中不存在涵盖 t 所有字符的子串,则返回空字符串 ""

数据范围
  • m == s.length
  • n == t.length
  • 1 <= m, n <= 105
  • st 由英文字母组成
分析

滑动窗口,当我们第一次找到ts中的位置时,若长度为len,则后续的结果只需要考虑小于len的情况即可,设置一个长度为len的窗口,每次将窗口向右滑动,r指针为右边界,每次向右滑动一格,l指针为左边界,用于缩小滑动窗口,写一个check()函数判断窗口内的字符串是否包含t,若包含,则用l缩小窗口的即可。check()函数可以只使用一个map,在刚开始预处理t字符串的字符频数,s[l]t中则对应字符频数减1,若频数均<=0则说明包含t

代码
class Solution {
public:
    map<char, int> cnt;
    bool check() {
        for(auto [k, v] : cnt) {
            if(v > 0) return false;
        }
        return true;
    }
    void print() {
        for(auto [k, v] : cnt) {
            cout << k << " " << v << "  ";
        }
        cout << endl;
    }
    string minWindow(string s, string t) {
        if(s.size() < t.size()) return "";
        int l = 0, r = 0;
        for(int i = 0; i < t.size(); i ++ ) {
            cnt[t[i]] ++ ;
        }
        int len = 0x3f3f3f3f;
        int pos = -1;
        while(r < s.size()) {
            if(cnt.find(s[r]) != cnt.end()) {
                cnt[s[r]] -- ;
            }
            bool flag = check();
            while(check() && l <= r) {
                if(r - l + 1 < len) {
                    len = r - l + 1;
                    pos = l;
                }
                if(cnt.find(s[l]) != cnt.end()) cnt[s[l]] ++ ;
                l ++ ;
            }
            r ++ ;
        }
        if(pos == -1) return "";
        return s.substr(pos, len);
    }
};

15.三数之和

题目

给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i != ji != kj != k ,同时还满足 nums[i] + nums[j] + nums[k] == 0 。请你返回所有和为 0 且不重复的三元组。

数据范围
  • 3 <= nums.length <= 3000
  • -105 <= nums[i] <= 105
分析

本题实际是两数之和的进阶版,最暴力的方法就是使用三重循环,复杂度为O(N^3),由于本题和两数之和有点关系,很容易可以发现后面的两重循环可以使用一个双指针算法进行简化,思路和两数之和一模一样。本题要求三元组不重复,思考一下什么情况会重复,双指针lr表示边界,举个例子-3、1、1、2,指针l遍历第一个1和第二个1都会产生相同的答案,若要消除这种情况,在遍历l时只要判断nums[l]nums[l-1]是否相同即可,若相同则上一次循环已经考虑过这种情况,直接continue,同时与这种情况对应的是遍历r时两个数相同,此时判断nums[r]nums[r+1]是否相同即可

代码
class Solution {
public:
    vector<vector<int>> threeSum(vector<int>& nums) {
        vector<vector<int>> res;
        int n = nums.size();
        sort(nums.begin(), nums.end());
        for(int i = 0; i < nums.size(); i ++ ) {
            if(i && nums[i] == nums[i - 1]) continue;
            int l = i + 1, r = n - 1;
            while(l < r) {
                if(l > i + 1 && nums[l] == nums[l - 1]) {
                    l ++ ;
                    continue;
                }
                if(r < n - 1 && nums[r] == nums[r + 1]) {
                    r -- ;
                    continue;
                }
                int t = nums[l] + nums[r] + nums[i];
                if(t > 0) {
                    r -- ;
                } else if(t < 0){
                    l ++ ;
                } else {
                    res.push_back({nums[i], nums[l], nums[r]});
                    l ++ ;
                    r -- ;
                }
            }
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值