高斯消元法

概述

高斯消元法(Gaussian elimination)是求解线性方阵组的一种算法,它也可用来求矩阵的秩,以及求可逆方阵的逆矩阵

模板

1.acwing 883.高斯消元解线性方程组
题目入口

代码

#include<bits/stdc++.h>
using namespace std;
const int N=105;
const double eps=1e-8;
double a[N][N];
void out(int n)
{
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n+1;j++)
        {
            cout<<a[i][j]<<" ";
        }
        cout<<endl;
    }
    cout<<endl;
}
void guass(int n)
{
    int r,c;
    for(r=1,c=1;c<=n;c++)
    {
        int pos=r;
        for(int i=r+1;i<=n;i++)
        {
            if(fabs(a[pos][c])<fabs(a[i][c])) pos=i;
        }
        if(fabs(a[pos][c])<eps) continue;
        for(int i=c;i<=n+1;i++) swap(a[pos][i],a[r][i]);
        for(int i=n+1;i>=c;i--) a[r][i]/=a[r][c];
        for(int i=r+1;i<=n;i++)
        {
            if(fabs(a[i][c])>eps)
            {
                for(int j=n+1;j>=c;j--)
                {
                    a[i][j]-=a[i][c]*a[r][j];
                }
            }
        }
        r++;
    }
    if(r<=n)
    {
        for(int i=r;i<=n;i++)
        {
            if(fabs(a[i][n+1])>eps)
            {
                cout<<"No solution"<<endl;
                return ;
            }
        }
        cout<<"Infinite group solutions"<<endl;
        return ;
    }
    //out(n);
    for(int i=n;i>=1;i--)
    {
        for(int j=i+1;j<=n;j++)
        {
            a[i][n+1]-=a[i][j]*a[j][n+1];
        }
    }
    for(int i=1;i<=n;i++) printf("%.2lf\n",a[i][n+1]);
}
int main()
{
    int n;
    cin>>n;
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n+1;j++)
        {
            cin>>a[i][j];
        }
    }
    guass(n);
    return 0;
}

2.acwing 884.高斯消元解异或线性方程组
题目入口

代码

#include<bits/stdc++.h>
using namespace std;
int n;
const int N=105;
int a[N][N];
void out(int n)
{
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n+1;j++)
        {
            cout<<a[i][j]<<" ";
        }
        cout<<endl;
    }
    cout<<endl;
}
void guass(int n)
{
    int c,r;
    for(c=1,r=1;c<=n;c++)
    {
        int pos=r;
        for(int i=r;i<=n;i++)
        {
            if(a[i][c])
            {
                pos=i;
                break;
            }
        }
        if(!a[pos][c]) continue;
        for(int i=c;i<=n+1;i++) swap(a[pos][i],a[r][i]);
        for(int i=r+1;i<=n;i++)
        {
            if(a[i][c])
            {
                for(int j=n+1;j>=c;j--)
                {
                    a[i][j]^=a[r][j];
                }
            }
        }
        r++;
    }
    //out(n);
    if(r<=n)
    {
        for(int i=r;i<=n;i++)
        {
            if(a[i][n+1])
            {
                cout<<"No solution"<<endl;
                return ;
            }
        }
        cout<<"Multiple sets of solutions"<<endl;
        return ;
    }
    for(int i=n;i>=1;i--)
    {
        for(int j=i+1;j<=n;j++)
        {
            a[i][n+1]^=a[i][j]*a[j][n+1];
        }
    }
    for(int i=1;i<=n;i++) cout<<a[i][n+1]<<endl;
}
int main()
{
    cin>>n;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n+1;j++)
            cin>>a[i][j];
    guass(n);
    return 0;
}

经典例题

洛谷P3389 高斯消元法

题目描述
给定一个线性方程组,对其求解
输入格式
第一行一个正整数n
第二至n+1行,每行n+1个整数,为a1,a2……和b,代表一组方程
输出格式
共n行,每行一个数,第i行为xi(保留2位小数)
如果不存在唯一解,在第一行输出“No Solution”.
输入样例
3
1 3 4 5
1 4 7 3
9 3 2 2
输出样例
-0.97
5.18
-2.39

代码

#include<bits/stdc++.h>  
using namespace std;  
#define int long long  
const int N=105;  
double mp[N][N];  
int n;  
signed main()  
{  
    cin>>n;  
    for(int i=1;i<=n;i++)  
    {  
        for(int j=1;j<=n+1;j++)  
        {  
            cin>>mp[i][j];  
        }  
    }  
    for(int i=1;i<=n;i++)//列主元  
    {  
        double maxx=mp[i][i];//寻找一列中最大的元素,将此行放在最前面,防止主对角线为mp[i][i]为0  
        int pos=i;  
        for(int j=i+1;j<=n;j++)  
        {  
            if(mp[j][i]>maxx)  
            {  
                pos=j;  
                maxx=mp[j][i];  
            }  
        }  
        if(pos!=i)  
        {  
            for(int j=i;j<=n+1;j++)  
            {  
                double k=mp[pos][j];  
                mp[pos][j]=mp[i][j];  
                mp[i][j]=k;  
            }  
        }  
        for(int j=i+1;j<=n;j++)//将第i列的元素置0  
        {  
            double tmp=1.0*mp[j][i]/mp[i][i];  
            for(int k=i;k<=n+1;k++)  
            {  
                mp[j][k]-=tmp*mp[i][k];  
            }  
        }  
    }  
    bool flag=true;  
    for(int i=n;i>=1;i--)  
    {  
        for(int j=i+1;j<=n;j++)  
        {  
            mp[i][n+1]-=mp[i][j]*mp[j][n+1];//mp[j][n+1]存储的是xj的值  
        }  
        if(mp[i][i]==0)//当主对角线有元素为0时无解  
        {  
            cout<<"No Solution"<<endl;  
            flag=false;  
            break;  
        }  
        mp[i][n+1]/=mp[i][i];//主对角线不一定为1,将结果进行处理  
    }  
    if(flag)  
    for(int i=1;i<=n;i++)  
    {  
        printf("%.2lf\n",mp[i][n+1]);  
    }  
    return 0;  
}  

洛谷P2455 线性方程组

题目描述
已知n元线性方程组,求解方程组
输入格式
第一行输入未知数个数n
接下来n行,每行n+1个整数,表示每一个方程的系数及方程右边的值
输出格式
如果有唯一解,则输出解,保留两位小数
无解输出-1
无穷多解输出0
输入样例
3
2 -1 1 1
4 1 -1 5
1 1 1 0
输出样例
x1=1.00
x2=0.00
x3=-1.00

代码

#include<bits/stdc++.h>  
using namespace std;  
#define int long long  
const double eps=1e-8;  
int n;  
const int N=55;  
double mp[N][N];  
bool flag=true;  
void Gauss(double mp[][N])  
{  
    for(int i=1;i<=n;i++)  
    {  
        double maxx=mp[i][i];  
        int pos=i;  
        for(int j=i+1;j<=n;j++)  
        {  
            if(mp[j][i]-maxx>eps)  
            {  
                maxx=mp[j][i];  
                pos=j;  
            }  
        }  
        if(fabs(maxx)<=eps) continue;//若最大值为0,说明mp[i][i]整列为0,进入下一列  
        if(pos!=i) for(int j=i;j<=n+1;j++) swap(mp[pos][j],mp[i][j]);  
        for(int j=i+1;j<=n;j++)  
        {  
            if(fabs(mp[j][i])<=eps) continue;  
            double tmp=mp[j][i]/mp[i][i];  
            for(int k=i;k<=n+1;k++)  
            {  
                mp[j][k]-=tmp*mp[i][k];  
            }  
        }  
    }  
    for(int i=1;i<=n;i++)//判断0,0,0,0……x 的情况  
    {  
       if(fabs(mp[i][n+1])>eps)  
       {  
           bool check0=false;  
           for(int j=1;j<=n;j++) if(fabs(mp[i][j])>eps)  
           {  
               check0=true;  
               break;  
           }  
           if(!check0)  
           {  
               flag=false;  
               cout<<"-1"<<endl;  
               return ;  
           }  
       }  
    }  
    flag=true;  
    for(int i=n;i>=1;i--)  
    {  
        for(int j=i+1;j<=n;j++)  
        {  
            mp[i][n+1]-=mp[i][j]*mp[j][n+1];  
        }  
        if(fabs(mp[i][i])<=eps&&fabs(mp[i][n+1])>eps){cout<<"-1"<<endl; flag=false; return ;};//首先判断无解,再判断无穷多解  
        if(fabs(mp[i][i]<=eps&&fabs(mp[i][n+1])<=eps)) {cout<<"0"<<endl; flag=false; return ;}  
        mp[i][n+1]/=mp[i][i];  
    }  
}  
signed main()  
{  
    cin>>n;  
    for(int i=1;i<=n;i++)  
    {  
        for(int j=1;j<=n+1;j++)  
        {  
            cin>>mp[i][j];  
        }  
    }  
    Gauss(mp);  
    if(flag)  
    for(int i=1;i<=n;i++) printf("x%d=%.2lf\n",i,mp[i][n+1]+eps);  
    return 0;  
}  
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
非线性方程组是指方程中至少包含一个非线性项的方程组。而二分法是一种常用的数值求解非线性方程的方法之一。 在Python中使用二分法求解非线性方程组的步骤如下: 1. 定义非线性方程组:根据题目给定的非线性方程组,首先将方程组表示成函数的形式。例如,假设方程组为f(x)=0,则需要定义函数f(x)。 2. 确定求解的范围:根据函数的特性选择一个合适的求解范围。二分法要求在求解范围内存在一个根。 3. 实现二分法函数:编写一个二分法函数,根据给定的非线性方程组函数和求解范围,使用二分法迭代求解方程组。 - 使用两个指针low和high表示求解范围的左右边界。 - 根据二分法的思想,通过计算中点mid=(low+high)/2,将求解范围划分为两半。 - 计算函数f(mid)的值,并判断其与0的关系,若小于0则更新low为mid,若大于0则更新high为mid。 - 不断重复上述步骤,直到求解精度满足要求或迭代次数达到指定阈值。 4. 调用二分法函数求解:在主程序中调用定义好的二分法函数,传入非线性方程组函数和求解范围等参数。根据需要可以设置求解精度和迭代次数阈值。 5. 输出结果:根据需要输出方程组的根或最优解,并进行结果的验证和分析。 总体而言,使用Python的二分法求解非线性方程组的方法相对简单直观。但需要注意的是,二分法只能求得一个根,如果存在多个根或非线性方程组无解,需要使用其他数值方法进行求解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值