【测评函数(单变量)】
- 波士顿房产数据(只使用房间数量这个特征)
- 数据切分(train_test_split)
- MSE、MAE、RMSE、r2_score
import pandas as pd
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
boston = datasets.load_boston()
x = boston.data #获得数据集的特征属性列
y = boston.target #获得数据集的label列
df = pd.DataFrame(data = np.c_[x,y],columns=np.append(boston.feature_names,[‘MEDV’])) #np.c_是按列连接两个矩阵,就是把两矩阵左右相加,要求列数相等
df = df[[‘RM’,‘MEDV’]] #选择房间数属性列和房价属性列
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3) #划分数据集
scaler = StandardScaler() #作用:去均值和方差归一化。可保存训练集中的均值、方差参数,然后直接用于转换测试集数据。
x_train = scaler.fit_transform(x_train)
x_test = scaler.fit_transform(x_test)<