算法梳理进阶任务三:测评函数(单变量)

使用波士顿房产数据,仅考虑房间数量(RM)这一特征,通过数据切分、预处理、线性回归模型训练,计算并展示了MSE、RMSE、MAE和r2_score四种评估指标,以理解房间数量对房价的影响。
摘要由CSDN通过智能技术生成

【测评函数(单变量)】

  1. 波士顿房产数据(只使用房间数量这个特征)
  2. 数据切分(train_test_split)
  3. MSE、MAE、RMSE、r2_score

import pandas as pd
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression

boston = datasets.load_boston()
x = boston.data #获得数据集的特征属性列
y = boston.target #获得数据集的label列
df = pd.DataFrame(data = np.c_[x,y],columns=np.append(boston.feature_names,[‘MEDV’])) #np.c_是按列连接两个矩阵,就是把两矩阵左右相加,要求列数相等
df = df[[‘RM’,‘MEDV’]] #选择房间数属性列和房价属性列

x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3) #划分数据集

scaler = StandardScaler() #作用:去均值和方差归一化。可保存训练集中的均值、方差参数,然后直接用于转换测试集数据。
x_train = scaler.fit_transform(x_train)
x_test = scaler.fit_transform(x_test)<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值