- 博客(9)
- 收藏
- 关注
原创 (机器学习)sklearn降维算法PCA(用几个小案例详解PCA降维)
本文主要参考菜菜的机器学习课程及其课件本篇博文基本不涉及PCA的任何数学过程,仅讲解在sklearn中如何调用相关类实现PCA降维目录1.维度和降维的定义1.1维度的定义1.2降维的含义1.3降维的步骤2.PCA和SVDclass sklearn.decomposition.PCA2.1重要参数n_components2.1.1案例:高维数据的可视化2.1.2 最大似然估计自选超参数n_components2.1.3 按信息量占比选超参数n_components2.2重要参数svd_solver 与 r
2020-12-04 21:43:11 14581 1
原创 (机器学习)随机森林填补缺失值的思路和代码逐行详解
随机森林填补缺失值1.使用0和均值来填补缺失值2.用随机森林填补缺失值的思路3.使用随机森林填补缺失值代码逐行详解3.1导包,准备数据,以及创造缺失的数据集3.2数据集中缺失值从少到多进行排序3.3构建新特征矩阵和新标签3.4在新特征矩阵中,对含有缺失值的列进行0的填补3.5找出训练集和测试集3.6用随机森林回归来填补缺失值3.7将填补好的特征填入到原始的特征矩阵中3.8完整代码4.随机森林填补缺失值的效果5.完整代码我们从现实中收集的数据,几乎不可能是完美无缺的,往往都会有一些缺失值。而随机森林的回归,
2020-11-13 15:10:11 18621 15
原创 (机器学习)sklearn随机森林和RandomForestClassifier、RandomForestRegressor类
1.集成算法概述随机森林一种集成算法。集成学习(ensemble learning)是时下非常流行的机器学习算法,它本身不是一个单独的机器学习算法,而是通过在数据上构建多个模型,集成所有模型的建模结果。集成算法会考虑多个评估器的建模结果,汇总之后得到一个综合的结果,以此来获取比单个模型更好的回归或者分类结果。多个模型集成成为的模型叫做集成评估器(ensemble estimator),组成集成评估器的每个模型都叫做基评估器(base estimator),对于随机森林来说,它的基评估器就是决策树,一大堆
2020-11-13 13:56:35 3198
原创 (tensorflow笔记)神经网络中的一些关键概念(学习率、激活函数、损失函数、欠拟合和过拟合、正则化和优化器)
目录标题1.神经网络复杂度空间复杂度时间复杂度2.学习率策略指数衰减学习率分段常数衰减3.激活函数sigmoidtanhReLULeaky ReLU建议损失函数欠拟合与过拟合正则化减少过拟合优化器更新网络参数1.神经网络复杂度神经网络的复杂度,多用神经网络的层数和神经网络中待优化参数的个数表示。以下图为例说明空间复杂度神经网络的层数=隐藏层的层数+1个输出层统计神经网络的层数时,只统计具有运算能力的层,输入层仅把数据传输过来,没有运算,不算到神经网络的层数中。输入层和输出层之间的所有层都叫做隐藏
2020-11-05 21:53:51 3104 2
原创 (tensorflow笔记)神经网络偏底层实现鸢尾花分类
神经网络偏底层实现鸢尾花分类1.准备数据1.1数据集读入1.2数据集乱序1.3生成训练集和测试集1.4配对(输入特征和标签),每次读入一小撮(batch)2.搭建网络3.参数优化4.测试效果5.acc/loss可视化1.准备数据1.1数据集读入# 导入数据,分别为输入特征和标签x_data = datasets.load_iris().datay_data = datasets.load_iris().target1.2数据集乱序随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率#
2020-11-02 14:48:03 306
原创 (tensorflow笔记)张量和常见函数
张量生成1.张量定义张量(tensor):多维数组(列表)。张量的维数叫做阶,判断张量是几阶的,就看方括号的个数有几个。0阶张量叫做标量,表示一个单独的数1阶张量叫做向量,表示一个一维数组2阶张量叫做矩阵,表示一个二维数组张量可以表示0阶到n阶的数组2.创建一个张量tf.constant(张量内容,dtype=数据类型)创建一个1阶张量,里面有两个元素1。a = tf.constant([1, 5], dtype=tf.int64)print(a) #tf.Tensor([1 5],
2020-11-01 15:07:08 1289 1
原创 (深度学习)with语句在python和深度学习的用法
文章目录1.python中的with语句1.1上下文管理器__enter ____exit __1.2with语句执行过程1.3自定义上下文管理器2.with tf.GradientTape() as tape1.python中的with语句用python打开文件时,一定要记得调用方法close()将文件关闭。要确保文件得以关闭,可使用一条try/finally语句,并在finally子句中调用close。# 在这里打开文件try: # 将数据写入到文件中finally: file.close
2020-10-31 11:13:58 705
原创 (机器学习)sklearn决策树和DecisionTreeClassifier、DecisionTreeRegressor类
1.分类树1.1sklearn基本建模流程sklearn通用的编程步骤有以下四步:1.数据准备2.建立模型3.训练4.测试在此流程下,针对红酒数据集,分类树对应的代码为:from sklearn import treefrom sklearn.datasets import load_winefrom sklearn.model_selection import train_test_split#1.数据准备wine = load_wine()x = wine.datay =
2020-10-28 21:55:45 2377 1
原创 决策边界绘制函数plot_decision_boundary()和plt.contourf函数详解
在做吴恩达老师的深度学习课程作业时,发现决策边界函数不好理解plot_decision_boundary(model , X , y)。将此函数理解记录下:作业地址:https://blog.csdn.net/u013733326/article/details/79702148绘制梯度下降算法图形或是决策边界,核心便在于知道plt.contourf函数的用法plt.contourf函数这里参考https://blog.csdn.net/qq_44669578/article/details/103
2020-07-26 19:42:33 19833 7
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人