【Prony算法】之公式推导及算法步骤


1 公式推导过程

Prony方法假定的模型是一组p个具有任意振幅、相位、频率和衰减因子的指数函数,其离散时间的函数形式如下(记为式为4-7-1):
在这里插入图片描述
在上式中,N为采样数据的个数;m为模型阶数,且N≥2m。

式4-7-1用作近似测量数据x(0),…,x(N-1)的模型。更一般地,zm和bm假定是复数,其公式如下(记为4-7-2):
在这里插入图片描述
其中的符号为:幅值Am、频率fm、相位(单位是弧度)θm和衰减因子αm,Δt代表采样间隔。

使平方误差(记为式4-7-3):
在这里插入图片描述
最小,便可以求出{Ammm,fm},但解上述这样一个非线性的最小二乘问题是困难的,通常这种求解是一个迭代过程,本文不打算详细介绍。

下面仅讨论{Ammm,fm}的线性估计问题。

首先定义多项式(记为4-7-4):
在这里插入图片描述
根据式4-7-1可知,表示:
在这里插入图片描述
的一种方法是:
在这里插入图片描述
用am乘上式,然后对p+1个乘积求和,即有:
在这里插入图片描述
又因为:
在这里插入图片描述
所以:
在这里插入图片描述
上式记为4-7-5,该式最后等于零是因为第二项求和恰好是式(4-7-4)的位于根zl处的多项式φ(zl),而φ(zl)=0。【我并不理解本段】

式(4-7-5)意味着
在这里插入图片描述
满足下面递推的差分方程式(记为4-7-6),确实是这样:
在这里插入图片描述
现在定义真实测量的数据x(n)和其近似值x^(n)之间的差为e(n),即:
在这里插入图片描述
上式记为4-7-7,将式(4-7-6)代入式(4-7-7)得:
在这里插入图片描述
上式记为4-7-8。参数的最小二乘估计应通过使
在这里插入图片描述
最小化求出,但这将得到一组难于求解的非线性方程,下面不这样做。

现在定义(记为4-7-9):
在这里插入图片描述
使得式4-7-8成为下式(记为4-7-10):
在这里插入图片描述
现在需要使
在这里插入图片描述
最小,而不是让
在这里插入图片描述
最小。

由式4-7-10可得:
在这里插入图片描述
上图中的表达式对应于下面的矩阵方程:
在这里插入图片描述
Prony方法需要求解上面的矩阵方程。

为使:
在这里插入图片描述
最小,可先令上式的偏导数∂εp/∂am=0得到式(记为4-7-12):
在这里插入图片描述
式中x(n-i)为样本数据;x*(n-i)为x(n-i)的共轭,下文再出现此表达式也是同样的解释,不再重复。

对应的最小误差能量为下式(记为4-7-13):
在这里插入图片描述
现在定义下式(记为4-7-14):
在这里插入图片描述
则式4-7-12可写作(记为4-7-15):
在这里插入图片描述
求解上述方程即可得到参数a1,a2,…,ap和最小误差能量εp的估计值。

根据刚刚得到的参数a1,a2,…,ap
在这里插入图片描述
可求出其根zi,其中i=1,…,p。

现在假设zi已被求出,则式4-7-1就简化为关于未知参数bm的线性方程,其矩阵形式(记为4-7-16)为:
在这里插入图片描述
其中:
在这里插入图片描述
上式的矩阵Φ是N×p维的范德蒙特矩阵。因此参数向量b的解由:
在这里插入图片描述
给出。其中矩阵ΦHΦ可表示为下式(记为4-7-18):
在这里插入图片描述
其中,有下式(记为4-7-19):
在这里插入图片描述


2 算法步骤

下面是Prony算法步骤:

1、构造矩阵R,其中pe为扩展后的阶数,且有pe>>p,pe的最大值=N/2:
在这里插入图片描述
2、用SVD-TLS方法确定R的有效秩p;

3、根据式:
在这里插入图片描述
求解上述方程即可得到参数a1,a2,…,ap和最小误差能量εp的估计值。

4、求式:
在这里插入图片描述
的根zi,其中i=1,…,p。然后需要通过下式递推出x^(n),其中x^(0)=x(0):
在这里插入图片描述
除此之外,还有:
在这里插入图片描述
5、根据式4-7-16~4-7-19计算参数b1,b2,…,bp

6、利用下式计算振幅、相位、频率和衰减系数,其中k=1,2,…,p(请使用i替换下式的k):
在这里插入图片描述


3 参考文献

1、《现代信号处理》-张贤达-清华大学出版社

2、Prony算法分析低频振荡的有效性研究_王铁强

3、一种基于综合DFT和Prony算法的谐波与间谐波分析方法


END

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值