文章目录
0 前言
阻尼(damping)是指摇荡系统或振动系统受到阻滞使能量随时间而耗散的物理现象。
Prony算法是一种使用复指数衰减函数的线性组合来描述等间距采样数据的数学模型,其中指数项个数为Prony算法模型的阶数。
1 Prony算法简介
1.1 简介
使用Prony吸收衰减滤波方法求得的吸收系数与地震信号的频率有关,能够较客观地反映地震信号随频率变化的衰减情况。其优点如下:
1、算法采用了阻尼谐波分解信号和非线性滤波方法;
2、可以直接求取地质体的吸收系数(或称为衰减系数),客观体现地质体的频率特性;
3、具有良好的时间与空间分辨率,可以在高频域显示地质体的一些新的特性。
地震信号x(t)可以采用阻尼谐波xp(t)描述,xp(t)可以分解成一系列余弦函数分量,每一分量均采用振幅、衰减系数、相位和频率四个参数构成。将原始信号x(t)转换成xp(t)的过程就是Prony变换,而Prony吸收衰减滤波就是选择适当的Prony变换参数,采用部分Prony分量重构地震信号的过程。
Prony算法特别适用于具有衰减振荡分量的非平稳过程的研究,该算法需要计算最小二乘法拟合和高次代数方程求复根。
1.2 数学形式
相对于傅氏变换和最小二乘算法,Prony算法具有以下优点:
(1)Prony算法可以直接从时域中通过拟合求得信号的幅值、相位、阻尼比和频率,而无须通过频域响应来求,计算量大为减少。
(2)Prony算法无须解特征方程,无须估计样本自相关,仅通过线性方程组和多项式方程,便可求得信号的模态信息,特别是能够从时域响应中分析出信号的阻尼因子,是一种非线性的多维滤波方法,具有很高的精度。
1.3 拟合效果判断
SSNR结果越大,表示拟合的结果越精确,一般认为SSNR达到20dB以上时,Prony分析得到的结果是可以接受的,接近40dB则更加理想。SSNR过低会导致Prony分析的误差过大,并且通常意味着线性预测模型的阶数过低。
另外,通过比较真实数据曲线和拟合数据曲线,也可以作为一种辅助手段直观的判断拟合的效果。
2 Prony算法参数选择
本节的参数指的是:采样频率、数据时间窗长度与模型有效阶数。Prony算法的拟合结果与其参数的选择有很大的关系,如果参数选择不当,Prony算法可能无法拟合,或者得到错误的结果,同时可能还会严重影响Prony算法的分析速度。
Prony方法在信号拟合过程中参数一经确定就贯穿于拟合过程始终,因此系统结构变化会对Prony分析的准确度造成影响。为此拟合过程中应对参数进行交互式优化,即对信号进行预先分析和判断,然后对信号反映出的不同阶段设定优化的Prony参数。
下面对上述三个参数的选择给出一般性结论,注意这些参数的选择并不是完全独立的。
2.1 采样频率的选择
实际中测量到的信号大多是连续信号,而Prony算法是建立在离散预测模型基础上的,因此在实际应用中需要将测得的连续信号用等时间间隔的离散信号来代替。
要获得正确的估计,信号采样应满足Nyquist采样定理,即采样频率应大于信号最高频率的2倍,以避免频谱发生混叠,但是实际应用中,采样频率刚刚大于2倍的最高频率还不够。通过计算可知,采样频率应大于信号中最高频率成分的4倍。但应用过高的采样频率也没有必要,因为在时间窗确定的情况下,增大采样频率,运算数据点将成倍增加,势必导致运算量变大,运算时间过长,从而可能造成拟合结果误差过大甚至失败。
一般采样频率取4fmax~10fmax较为合适。采样频率越接近4fmax,信号中各参量的辨识精度越高。
2.2 数据时间窗的选择
对于时窗长度应合理选择:
1、过短会丢失数据信息,致使分析结果出现重大误差,甚至失败;
2、过长可能无法辨识出快速衰减的分量,且将增加计算的复杂度,降低计算效率。
一般认为,时间长度应至少包括已知信号中最低频率模式的2个周期。
2.3 模型有效阶数的确定
要想准确地描述被研究的系统,阶数越大意味着模型越接近实际,分析所得结果越精确。但是应该首先考虑起主导作用的有限次频率分量而忽略其他次要分量,需要注意到阶数越高计算量也会越大,同时对硬件系统的要求也越高。因此,研究适合的拟合阶数,对于不同应用场合的信号特征分量的准确提取是很必要的。
pe越接近N/2,拟合效果越好。这就是一般选择初始阶数在N/2附近的原因。而【5 参考文献】中的文献1中表明描述一个地震信号的话用3~4个就足够了。选择好初始阶数pe后,从这pe个候选分量中选取p个分量,使这p个分量的拟合效果与真实数据最接近,作为模型最终阶数,即自相关矩阵
的有效秩。可采用的方法为:首先对pe个分量的幅值按照从大到小进行排序,优先选择幅值较大的分量,直到使【1.3 拟合效果判断】一节提到的信噪比SNR接近40为止,作为最终的模型有效阶数p。
为了改善拟合的效果,可能会得到频率分量数大于实际所含的分量数,其中包含了很多实际上没有或不合理的成分,这就需要算法上要滤除掉多余的分量,必要时还需要在初步过滤或增加良好的去噪环节的基础上,给出分量参数,供操作人员进一步分析。
3 某些因素对Prony算法的影响
由于Prony算法需要复杂的高阶矩阵运算,同时由于算法对噪声的影响十分敏感,在干扰噪声背景下,该模型的严格求解是一个高度非线性的最优化问题。
Prony算法对输入信号要求较高,对被分析数据的噪声非常敏感。而且系统振荡的过程严格上说并不是一种平稳过程,因此有必要探讨Prony算法对信号噪声及非平稳信号的表现,以便找到一种具有良好抗噪效果的方法和针对非平稳信号的对策。
3.1 噪声的影响
影响如下:
(1)单个扰动脉冲对幅值和初相有一定的影响,但对频率和衰减因子没有影响。
(2)当噪声足够窄时,扰动对Prony分析结果只影响幅值和初相,而振荡分析中相对重要的衰减因子和信号频率没受影响。
(3)扰动信号宽度对分析的结果具有相当大的影响。
(4)全程叠加有白噪声扰动时,分析结果将出现误差,特别是衰减因子误差较大,而且结果中含有大量的幅值不大、频率较低的杂散信号。
在噪声的影响下,Prony模型的阶数必须远远大于系统实际阶数才会达到对系统输入信号的良好拟合,但是这样将导致计算量显著增加,目前处理的主要手段是采用卡尔曼滤波。采用适当的插值算法或数据窗滑动的办法对改善计算精度也是有利的。
3.2 信号的非平稳性的影响
Prony算法是一种对平稳信号分析的算法,但在系统振荡过程中,信号存在变化,非平稳性必然会对Prony算法产生影响。输入信号的幅值、衰减因子、振荡频率和信号的初相在分析过程中发生变化的情况为:
(1)幅值的变化对分析结果产生了一定影响,尤其是变化分量的幅值和衰减因子。
(2)衰减因子变化,信号的频率分量和初相变化不大,但衰减因子变化很大。
(3)初相的变化会影响全部的分析结果的数值。
(4)信号频率的变化将严重影响分析结果,对分析振荡问题十分不利。
4 Prony算法的改进
改进的几条措施如下:
1、通过计算均方差(MSE)结果确定算法的阶数,而不是按矩阵R
的秩确定。下面给出一种MSE定义:
C可设为一常数,也可取输入数据的最大值。最小均方差对应阶数是最优阶数。
2、如果分析结果误差较大,可将分析数据窗分成更小的窗口,这样避免信号非平稳性的影响。分段的标准可按信号的奇异点进行分类。
3、振荡中信号的衰减无论正负不能过大,不同段之间的信号分量应可以光滑连接,可以忽略非常小幅值的信号。
4、可采用适当的插值算法,以提高信号的采样率,从而改善计算的精度。
5 参考文献
3、其他资料等等
END