一、简介
Spark SQL 是 Spark 用于结构化数据(structured data)处理的 Spark 模块。
1.特点:
➢ 数据兼容方面 SparkSQL 不但兼容 Hive,还可以从 RDD、parquet 文件、JSON 文件中获取数据,未来版本甚至支持获取 RDBMS 数据以及 cassandra 等 NOSQL 数据;
➢ 性能优化方面 除了采取 In-Memory Columnar Storage、byte-code generation 等优化技术外、将会引进 Cost Model 对查询进行动态评估、获取最佳物理计划等等;
➢ 组件扩展方面 无论是 SQL 的语法解析器、分析器还是优化器都可以重新定义,进行扩展。
2.优点
SparkSQL 可以简化 RDD 的开发,提高开发效率,且执行效率非常快,所以实际工作中,基本上采用的就是 SparkSQL。Spark SQL 为了简化 RDD 的开发,提高开发效率,提供了 2 个编程抽象,类似 Spark Core 中的 RDD
DataFrame、DataSet.
3.RDD、DataFrame、DataSet 三者的关系
在 SparkSQL 中 Spark 为我们提供了两个新的抽象,分别是 DataFrame 和 DataSet
3.1.首先从版本的产生上来看:
➢ Spark1.0 => RDD
➢ Spark1.3 => DataFrame
➢ Spark1.6 => Dataset
如果同样的数据都给到这三个数据结构,他们分别计算之后,都会给出相同的结果。不同是的他们的执行效率和执行方式.
在后期的 Spark 版本中,DataSet 有可能会逐步取代 RDD和 DataFrame 成为唯一的 API 接口。
3.2.三者的共性
➢ RDD、DataFrame、DataSet 全都是 spark 平台下的分布式弹性数据集,为处理超大型数据提供便利;
➢ 三者都有惰性机制,在进行创建、转换,如 map 方法时,不会立即执行,只有在遇到Action 如 foreach 时,三者才会开始遍历运算;
➢ 三者有许多共同的函数,如 filter,排序等;
➢ 在对 DataFrame 和 Dataset 进行操作许多操作都需要这个包:import spark.implicits._(在创建好 SparkSession 对象后尽量直接导入)
➢ 三者都会根据 Spark 的内存情况自动缓存运算,这样即使数据量很大,也不用担心会内存溢出
➢ 三者都有 partition 的概念
➢ DataFrame 和 DataSet 均可使用模式匹配获取各个字段的值和类型
3.3.三者的区别
3.3.1.RDD
➢ RDD 一般和 spark mllib 同时使用
➢ RDD 不支持 sparksql 操作
3.3.2.DataFrame
➢ 与 RDD 和 Dataset 不同,DataFrame 每一行的类型固定为 Row,每一列的值没法直接访问,只有通过解析才能获取各个字段的值
➢ DataFrame 与 DataSet 一般不与 spark mllib 同时使用
➢ DataFrame 与 DataSet 均支持 SparkSQL 的操作,比如 select,groupby 之类,还能注册临时表/视窗,进行 sql 语句操作
➢ DataFrame 与 DataSet 支持一些特别方便的保存方式,比如保存成 csv,可以带上表头,这样每一列的字段名一目了然
3.3.3.DataSet
➢ Dataset 和 DataFrame 拥有完全相同的成员函数,区别只是每一行的数据类型不同。DataFrame 其实就是 DataSet 的一个特例 type DataFrame = Dataset[Row]
➢ DataFrame 也可以叫 Dataset[Row],每一行的类型是 Row,不解析,每一行究竟有哪些字段,各个字段又是什么类型都无从得知,只能用上面提到的 getAS 方法或者共性中的第七条提到的模式匹配拿出特定字段。而 Dataset 中,每一行是什么类型是不一定的,在自定义了 case class 之后可以很自由的获得每一行的信息
二、DataFrame
DataFrame 是
Spark SQL 中表示数据集的一种方式,它是以命名列组织的分布式数据集合,并支持多种数据源。可以通过 spark.read
方法读取不同的数据源,如 CSV、JDBC 等,来创建 DataFrame。
1.创建DataFrame
在 Spark SQL 中 SparkSession 是创建 DataFrame 和执行 SQL 的入口,
创建 DataFrame有三种方式:
- 通过 Spark 的数据源进行创建.
- 从一个存在的 RDD 进行转换.
- 还可以从 Hive Table 进行查询返回.
1.1.通过 Spark 的数据源进行创建
1.1.1.查看 Spark 支持创建文件的数据源格式
scala> spark.read.
csv format jdbc json load option options orc parquet schema
table text textFile
1.1.2.在 spark 的 data 目录中创建 user.json 文件
[
{
"username": "张三",
"age": 29
},
{
"username": "里斯",
"age": 30
},
{
"username": "王武",
"age": 37
},
{
"username": "赵六",
"age": 41
},
{
"username": "陈七",
"age": 52
}
]
1.1.3.读取 json 文件创建 DataFrame
scala> val df=spark.read.option("multiLine",true).json("../data/user.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, username: string]
**注意事项:**如果json文件格式化了需要指定读取多行为真,option("multiLine",true)
,也可以不格式化json文件,直接将内容压平成为一个平面文件
1.1.4.结果展示
scala> df.show
+---+--------+
|age|username|
+---+--------+
| 29| 张三|
| 30| 里斯|
| 37| 王武|
| 41| 赵六|
| 52| 陈七|
+---+--------+
**注意:**如果从内存中获取数据,spark 可以知道数据类型具体是什么。如果是数字,默认作为 Int 处理;但是从文件中读取的数字,不能确定是什么类型,所以用 bigint 接收,可以和Long 类型转换,但是和 Int 不能进行转换
1.2.从一个存在的 RDD 进行转换
在后续章节中讨论
1.3.从 Hive Table 进行查询返回
在后续章节中讨论
2.SQL语法
SQL 语法风格是指我们查询数据的时候使用 SQL 语句来查询,这种风格的查询必须要有临时视图或者全局视图来辅助
2.1.1.对 DataFrame 创建一个临时表
scala> df.createOrReplaceTempView("people")
**注意:**此处是承接的前面读取的那个user.json文件,继续操作的
2.1.2.通过 SQL 语句实现查询全表
scala> val sqlDF=spark.sql("select * from people")
sqlDF: org.apache.spark.sql.DataFrame = [age: bigint, username: string]
2.1.3.结果展示
scala> sqlDF.show
+---+--------+
|age|username|
+---+--------+
| 29| 张三|
| 30| 里斯|
| 37| 王武|
| 41| 赵六|
| 52| 陈七|
+---+--------+
注意:普通临时表是 Session 范围内的,如果想应用范围内有效,可以使用全局临时表。使用全局临时表时需要全路径访问,如:global_temp.people
2.1.4.对于 DataFrame 创建一个全局表
scala> df.createGlobalTempView("people")
2.1.5.通过 SQL 语句实现查询全表
scala> spark.sql("SELECT * FROM global_temp.people").show()
或
scala> spark.newSession().sql("SELECT * FROM global_temp.people").show()
3.DSL 语法
DataFrame 提供一个特定领域语言(domain-specific language, DSL)去管理结构化的数据。可以在 Scala, Java, Python 和 R 中使用 DSL,使用 DSL 语法风格不必去创建临时视图了
3.1.1创建一个 DataFrame
scala> val df = spark.read.json("data/user.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
3.1.2.查看 DataFrame 的 Schema 信息
scala> df.printSchema
root
|-- age: Long (nullable = true)
|-- username: string (nullable = true)
3.1.3.只查看"username"列数据
scala> df.select("username").show
+--------+
|username|
+--------+
| 张三|
| 里斯|
| 王武|
| 赵六|
| 陈七|
+--------+
3.1.4.查看"username"列数据以及"age+1"数据
scala> df.select($"username",$"age"+1).show
+--------+---------+
|username|(age + 1)|
+--------+---------+
| 张三| 30|
| 里斯| 31|
| 王武| 38|
| 赵六| 42|
| 陈七| 53|
+--------+---------+
或者
scala> df.select('username,'age+1).show
+--------+---------+
|username|(age + 1)|
+--------+---------+
| 张三| 30|
| 里斯| 31|
| 王武| 38|
| 赵六| 42|
| 陈七| 53|
+--------+---------+
**注意:**涉及到运算的时候, 每列都必须使用$, 或者采用引号表达式:单引号+字段名
3.1.5.查看"age"大于"30"的数据
scala> df.filter($"age">30).show
+---+--------+
|age|username|
+---+--------+
| 37| 王武|
| 41| 赵六|
| 52| 陈七|
+---+--------+
3.1.6.按照"age"分组,查看数据条数
scala> df.groupBy("age").count.show
+---+-----+
|age|count|
+---+-----+
| 29| 1|
| 52| 1|
| 41| 1|
| 37| 1|
| 30| 1|
+---+-----+
4.RDD 转换为 DataFrame
在 IDEA 中开发程序时,如果需要 RDD 与 DF 或者 DS 之间互相操作,那么需要引入import spark.implicits._
这里的 spark 不是 Scala 中的包名,而是创建的 sparkSession 对象的变量名称,所以必须先创建 SparkSession 对象再导入。这里的 spark 对象不能使用 var 声明,因为 Scala 只支持val 修饰的对象的引入。
4.1.1.spark-shell 中无需导入,自动完成此操作。
scala> val idRdd=sc.textFile("../data/id.txt")
scala> idRdd.toDF("id").show
+---+
| id|
+---+
| id|
| 1|
| 2|
| 3|
| 4|
| 5|
| 6|
+---+
4.1.2.实际开发中,一般通过样例类将 RDD 转换为 DataFrame
scala> case class User(name:String, age:Int)
defined class User
scala> sc.makeRDD(List(("张三",40), ("里斯",40))).map(t=>User(t._1, t._2)).toDF.show
+----+---+
|name|age|
+----+---+
|张三| 40|
|里斯| 40|
+----+---+
5.DataFrame转换为RDD
DataFrame 其实就是对 RDD 的封装,所以可以直接获取内部的 RDD
scala> val df=sc.makeRDD(List(("张三",40), ("里斯",40))).map(t=>User(t._1, t._2)).toDF
df: org.apache.spark.sql.DataFrame = [name: string, age: int]
scala> val rdd=df.rdd
rdd: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[117] at rdd at <console>:26
scala> val array=rdd.collect
array: Array[org.apache.spark.sql.Row] = Array([张三,40], [里斯,40])
scala> array(0)
res50: org.apache.spark.sql.Row = [张三,40]
scala> array(1)
res51: org.apache.spark.sql.Row = [里斯,40]
**注意:**此时得到的 RDD 存储类型为 Row
三、Dataset
DataSet 是具有强类型的数据集合,需要提供对应的类型信息。
1.创建DataSet
1.1.1使用样例类序列创建 DataSet
scala> case class Person(name: String, age: Long)
defined class Person
scala> val caseClassDS = Seq(Person("张三",23),Person("里斯",43)).toDS()
caseClassDS: org.apache.spark.sql.Dataset[Person] = [name: string, age: bigint]
scala> caseClassDS.show
+----+---+
|name|age|
+----+---+
|张三| 23|
|里斯| 43|
+----+---+
1.1.2.使用基本类型的序列创建 DataSet
scala> val ds = Seq(1,2,3,4,5).toDS
ds: org.apache.spark.sql.Dataset[Int] = [value: int]
scala> ds.show
+-----+
|value|
+-----+
| 1|
| 2|
| 3|
| 4|
| 5|
+-----+
2.RDD转换为DataSet
SparkSQL 能够自动将包含有 case 类的 RDD 转换成 DataSet,case 类定义了 table 的结构,case 类属性通过反射变成了表的列名。Case 类可以包含诸如 Seq 或者 Array 等复杂的结构
scala> case class User(name:String, age:Int)
defined class User
scala> sc.makeRDD(List(("赵六",30), ("陈七",49))).map(t=>User(t._1, t._2)).toDS.show
+----+---+
|name|age|
+----+---+
|赵六| 30|
|陈七| 49|
+----+---+
3.DataSet转换为RDD
DataSet 其实也是对 RDD 的封装,所以可以直接获取内部的 RDD
scala> case class User(name:String, age:Int)
defined class User
scala> val ds=sc.makeRDD(List(("昭武",40), ("武则天",69))).map(t=>User(t._1, t._2)).toDS
ds: org.apache.spark.sql.Dataset[User] = [name: string, age: int]
scala> val rdd=ds.rdd
rdd: org.apache.spark.rdd.RDD[User] = MapPartitionsRDD[134] at rdd at <console>:26
scala> rdd.collect
res59: Array[User] = Array(User(昭武,40), User(武则天,69))
4.DataFrame和DataSet转换
scala> case class User(name:String, age:Int)
defined class User
scala>val df = sc.makeRDD(List(("奥本",31), ("里斯本",59))).toDF("name","age")
df: org.apache.spark.sql.DataFrame = [name: string, age: int]
//DataFrame 转换为 DataSet
scala>val ds=df.as[User]
res60: org.apache.spark.sql.Dataset[User] = [name: string, age: int]
//DataSet 转换为 DataFrame
scala>ds.toDF
res64: org.apache.spark.sql.DataFrame = [name: string, age: int]