青少年编程与数学 02-018 C++数据结构与算法 04课题、栈与队列

课题摘要:
栈(Stack)是一种线性数据结构,它遵循后进先出(Last In First Out,LIFO)的原则。这意味着最后添加到栈中的元素将是第一个被移除的元素。栈在计算机科学中有着广泛的应用,例如在函数调用、表达式求值和回溯算法中。
队列(Queue)是一种线性数据结构,它遵循先进先出(First In First Out,FIFO)的原则。这意味着最早添加到队列中的元素将是第一个被移除的元素。队列在计算机科学中有着广泛的应用,例如在任务调度、消息传递和缓冲区管理中。


一、栈

栈(Stack)是一种线性数据结构,它遵循后进先出(Last In First Out,LIFO)的原则。这意味着最后添加到栈中的元素将是第一个被移除的元素。栈在计算机科学中有着广泛的应用,例如在函数调用、表达式求值和回溯算法中。以下是对栈的详细解释:

1. 栈的定义

栈是一种线性数据结构,它只允许在一端(称为栈顶)进行插入和删除操作。栈顶是栈中最后一个被添加的元素的位置。栈的另一端称为栈底,通常是固定的。

2. 栈的特点

  • 后进先出(LIFO):最后添加的元素最先被移除。
  • 栈顶操作:所有操作(插入和删除)都在栈顶进行。
  • 动态大小:栈的大小可以动态变化,但通常有一个最大容量限制。
  • 线性结构:栈中的元素是线性排列的,每个元素都有一个直接的前驱和后继。

3. 栈的基本操作

栈的主要操作包括:

  • push:将一个元素添加到栈顶。
  • pop:从栈顶移除一个元素。
  • peektop:查看栈顶元素,但不移除它。
  • is_empty:检查栈是否为空。
  • size:返回栈中元素的数量。
示例

假设我们有一个栈,初始为空:

[]

执行以下操作:

  1. push(1)
    [1]
    
  2. push(2)
    [1, 2]
    
  3. push(3)
    [1, 2, 3]
    
  4. pop()
    [1, 2]
    
  5. peek()
    返回 2
    
  6. is_empty()
    返回 False
    
  7. size()
    返回 2
    

4. 栈的实现

栈可以用数组或链表来实现。以下是两种实现方式的详细说明:

(1)数组实现

使用数组实现栈时,栈的大小通常是固定的,但可以通过动态数组(如C++的std::vector)来实现动态大小。

#include <vector>
#include <stdexcept>

class Stack {
private:
    std::vector<int> items;

public:
    void push(int item) {
        items.push_back(item);
    }

    void pop() {
        if (!is_empty()) {
            items.pop_back();
        } else {
            throw std::out_of_range("pop from empty stack");
        }
    }

    int peek() const {
        if (!is_empty()) {
            return items.back();
        } else {
            throw std::out_of_range("peek from empty stack");
        }
    }

    bool is_empty() const {
        return items.empty();
    }

    size_t size() const {
        return items.size();
    }
};
(2)链表实现

使用链表实现栈时,栈的大小可以动态变化,但需要管理节点的分配和释放。

#include <iostream>
#include <stdexcept>

struct Node {
    int data;
    Node* next;

    Node(int val) : data(val), next(nullptr) {}
};

class Stack {
private:
    Node* top;

public:
    Stack() : top(nullptr) {}

    ~Stack() {
        while (!is_empty()) {
            pop();
        }
    }

    void push(int data) {
        Node* new_node = new Node(data);
        new_node->next = top;
        top = new_node;
    }

    void pop() {
        if (is_empty()) {
            throw std::out_of_range("pop from empty stack");
        }
        Node* temp = top;
        top = top->next;
        delete temp;
    }

    int peek() const {
        if (is_empty()) {
            throw std::out_of_range("peek from empty stack");
        }
        return top->data;
    }

    bool is_empty() const {
        return top == nullptr;
    }

    size_t size() const {
        size_t count = 0;
        Node* current = top;
        while (current) {
            count++;
            current = current->next;
        }
        return count;
    }
};

5. 栈的应用

栈在计算机科学中有着广泛的应用,以下是一些常见的应用场景:

(1)函数调用

在编程语言中,函数调用通常使用栈来实现。每次调用一个函数时,都会在栈上创建一个栈帧(Frame),用于存储函数的局部变量和返回地址。当函数返回时,栈帧被移除。

(2)表达式求值

栈可以用于求值表达式,特别是处理括号匹配和操作符优先级。例如,使用两个栈(一个用于操作数,一个用于操作符)可以实现中缀表达式的求值。

(3)回溯算法

栈可以用于实现回溯算法,例如在迷宫问题中,栈可以记录路径,当遇到死路时,可以回溯到上一个节点。

(4)括号匹配

栈可以用于检查括号是否匹配。例如,对于字符串 "{[()]}",可以使用栈来检查括号是否正确匹配。

(5)深度优先搜索(DFS)

栈可以用于实现深度优先搜索,通过栈来记录访问的节点。

6. 栈的优缺点

优点:

  • 简单高效:栈的操作(pushpoppeek)时间复杂度为O(1)。
  • 适用广泛:栈在许多算法和数据处理中都非常有用。

缺点:

  • 容量限制:如果使用固定大小的数组实现栈,可能会遇到栈溢出的问题。
  • 功能有限:栈只能在一端进行操作,不支持随机访问。

7. 总结

栈是一种线性数据结构,遵循后进先出(LIFO)的原则。它可以通过数组或链表实现,支持高效的操作(如 pushpoppeek)。栈在函数调用、表达式求值、括号匹配和回溯算法中有着广泛的应用。理解栈的特性和操作方法,有助于更好地使用它来解决各种编程问题。

二、队列

队列(Queue)是一种线性数据结构,它遵循先进先出(First In First Out,FIFO)的原则。这意味着最早添加到队列中的元素将是第一个被移除的元素。队列在计算机科学中有着广泛的应用,例如在任务调度、消息传递和缓冲区管理中。以下是对队列的详细解释:

1. 队列的定义

队列是一种线性数据结构,它只允许在一端(称为队尾)进行插入操作,在另一端(称为队头)进行删除操作。队头是队列中最早添加的元素的位置,队尾是队列中最后添加的元素的位置。

2. 队列的特点

  • 先进先出(FIFO):最早添加的元素最先被移除。
  • 队头操作:删除操作(dequeue)在队头进行。
  • 队尾操作:插入操作(enqueue)在队尾进行。
  • 动态大小:队列的大小可以动态变化,但通常有一个最大容量限制。
  • 线性结构:队列中的元素是线性排列的,每个元素都有一个直接的前驱和后继。

3. 队列的基本操作

队列的主要操作包括:

  • enqueue:将一个元素添加到队尾。
  • dequeue:从队头移除一个元素。
  • peekfront:查看队头元素,但不移除它。
  • is_empty:检查队列是否为空。
  • size:返回队列中元素的数量。
示例

假设我们有一个队列,初始为空:

[]

执行以下操作:

  1. enqueue(1)
    [1]
    
  2. enqueue(2)
    [1, 2]
    
  3. enqueue(3)
    [1, 2, 3]
    
  4. dequeue()
    [2, 3]
    
  5. peek()
    返回 2
    
  6. is_empty()
    返回 False
    
  7. size()
    返回 2
    

4. 队列的实现

队列可以用数组或链表来实现。以下是两种实现方式的详细说明:

(1)数组实现

使用数组实现队列时,队列的大小通常是固定的,但可以通过动态数组(如C++的std::vector)来实现动态大小。数组实现的队列需要处理数组的头部删除操作,这可能会导致效率问题。

#include <vector>
#include <stdexcept>

class Queue {
private:
    std::vector<int> items;

public:
    void enqueue(int item) {
        items.push_back(item);
    }

    void dequeue() {
        if (!is_empty()) {
            items.erase(items.begin());
        } else {
            throw std::out_of_range("dequeue from empty queue");
        }
    }

    int peek() const {
        if (!is_empty()) {
            return items.front();
        } else {
            throw std::out_of_range("peek from empty queue");
        }
    }

    bool is_empty() const {
        return items.empty();
    }

    size_t size() const {
        return items.size();
    }
};
(2)链表实现

使用链表实现队列时,队列的大小可以动态变化,且插入和删除操作的时间复杂度为O(1)。链表实现的队列需要管理节点的分配和释放。

#include <iostream>
#include <stdexcept>

struct Node {
    int data;
    Node* next;

    Node(int val) : data(val), next(nullptr) {}
};

class Queue {
private:
    Node* front;
    Node* rear;

public:
    Queue() : front(nullptr), rear(nullptr) {}

    ~Queue() {
        while (!is_empty()) {
            dequeue();
        }
    }

    void enqueue(int data) {
        Node* new_node = new Node(data);
        if (rear == nullptr) {
            front = rear = new_node;
        } else {
            rear->next = new_node;
            rear = new_node;
        }
    }

    void dequeue() {
        if (is_empty()) {
            throw std::out_of_range("dequeue from empty queue");
        }
        Node* temp = front;
        front = front->next;
        if (front == nullptr) {
            rear = nullptr;
        }
        delete temp;
    }

    int peek() const {
        if (is_empty()) {
            throw std::out_of_range("peek from empty queue");
        }
        return front->data;
    }

    bool is_empty() const {
        return front == nullptr;
    }

    size_t size() const {
        size_t count = 0;
        Node* current = front;
        while (current) {
            count++;
            current = current->next;
        }
        return count;
    }
};

5. 队列的应用

队列在计算机科学中有着广泛的应用,以下是一些常见的应用场景:

(1)任务调度

在操作系统中,任务调度器使用队列来管理待处理的任务。任务按照到达的顺序排队等待处理。

(2)消息传递

在消息队列系统中,队列用于存储和传递消息。消息按照到达的顺序被处理。

(3)缓冲区管理

在 I/O 操作中,队列用于管理缓冲区。例如,打印任务可以被放入一个队列中,打印机按照队列的顺序处理这些任务。

(4)广度优先搜索(BFS)

在图算法中,队列用于实现广度优先搜索。队列存储待访问的节点,确保节点按照到达的顺序被访问。

(5)事件驱动编程

在事件驱动的编程模型中,队列用于管理事件。事件按照发生的顺序被处理。

6. 队列的优缺点

优点:

  • 简单高效:队列的操作(enqueuedequeuepeek)时间复杂度为O(1)。
  • 适用广泛:队列在许多算法和数据处理中都非常有用。

缺点:

  • 容量限制:如果使用固定大小的数组实现队列,可能会遇到队列溢出的问题。
  • 功能有限:队列只能在一端插入,在另一端删除,不支持随机访问。

7. 总结

队列是一种线性数据结构,遵循先进先出(FIFO)的原则。它可以通过数组或链表实现,支持高效的操作(如 enqueuedequeuepeek)。队列在任务调度、消息传递、缓冲区管理和广度优先搜索中有着广泛的应用。理解队列的特性和操作方法,有助于更好地使用它来解决各种编程问题。

三、双向队列(Deque)

双向队列(Double-Ended Queue,简称 Deque)是一种特殊的队列,它允许在队列的两端(队头和队尾)进行插入和删除操作。双向队列结合了栈和普通队列的特点,提供了更灵活的操作方式。以下是对双向队列的详细解释:

1. 双向队列的定义

双向队列是一种线性数据结构,允许在队列的两端进行插入和删除操作。它支持以下操作:

  • 在队头插入元素(appendleft)。
  • 在队尾插入元素(append)。
  • 从队头删除元素(popleft)。
  • 从队尾删除元素(pop)。

2. 双向队列的特点

  • 灵活操作:支持在队列的两端进行插入和删除操作。
  • 高效实现:所有操作的时间复杂度为O(1)。
  • 动态大小:队列的大小可以动态变化,但通常有一个最大容量限制。
  • 线性结构:队列中的元素是线性排列的,每个元素都有一个直接的前驱和后继。

3. 双向队列的基本操作

双向队列的主要操作包括:

  • append(x):在队尾插入一个元素 x
  • appendleft(x):在队头插入一个元素 x
  • pop():从队尾删除一个元素并返回。
  • popleft():从队头删除一个元素并返回。
  • peek()front():查看队头元素,但不移除它。
  • peeklast()back():查看队尾元素,但不移除它。
  • is_empty():检查队列是否为空。
  • size():返回队列中元素的数量。
示例

假设我们有一个双向队列,初始为空:

[]

执行以下操作:

  1. append(1)
    [1]
    
  2. appendleft(2)
    [2, 1]
    
  3. append(3)
    [2, 1, 3]
    
  4. popleft()
    [1, 3]
    
  5. pop()
    [1]
    
  6. peek()
    返回 1
    
  7. peeklast()
    返回 1
    
  8. is_empty()
    返回 False
    
  9. size()
    返回 1
    

4. 双向队列的实现

双向队列可以用数组或链表来实现。以下是两种实现方式的详细说明:

(1)数组实现

使用数组实现双向队列时,需要处理数组的头部删除操作,这可能会导致效率问题。但通过使用双端数组(如C++的std::deque),可以高效地实现双向队列。

#include <deque>
#include <stdexcept>

class Deque {
private:
    std::deque<int> items;

public:
    void append(int item) {
        items.push_back(item);
    }

    void appendleft(int item) {
        items.push_front(item);
    }

    int pop() {
        if (!is_empty()) {
            int item = items.back();
            items.pop_back();
            return item;
        } else {
            throw std::out_of_range("pop from empty deque");
        }
    }

    int popleft() {
        if (!is_empty()) {
            int item = items.front();
            items.pop_front();
            return item;
        } else {
            throw std::out_of_range("popleft from empty deque");
        }
    }

    int peek() const {
        if (!is_empty()) {
            return items.front();
        } else {
            throw std::out_of_range("peek from empty deque");
        }
    }

    int peeklast() const {
        if (!is_empty()) {
            return items.back();
        } else {
            throw std::out_of_range("peeklast from empty deque");
        }
    }

    bool is_empty() const {
        return items.empty();
    }

    size_t size() const {
        return items.size();
    }
};
(2)链表实现

使用链表实现双向队列时,队列的大小可以动态变化,且插入和删除操作的时间复杂度为O(1)。链表实现的双向队列需要管理节点的分配和释放。

#include <iostream>
#include <stdexcept>

struct Node {
    int data;
    Node* prev;
    Node* next;

    Node(int val) : data(val), prev(nullptr), next(nullptr) {}
};

class Deque {
private:
    Node* front;
    Node* rear;

public:
    Deque() : front(nullptr), rear(nullptr) {}

    ~Deque() {
        while (!is_empty()) {
            pop();
        }
    }

    void append(int data) {
        Node* new_node = new Node(data);
        if (rear == nullptr) {
            front = rear = new_node;
        } else {
            rear->next = new_node;
            new_node->prev = rear;
            rear = new_node;
        }
    }

    void appendleft(int data) {
        Node* new_node = new Node(data);
        if (front == nullptr) {
            front = rear = new_node;
        } else {
            front->prev = new_node;
            new_node->next = front;
            front = new_node;
        }
    }

    int pop() {
        if (is_empty()) {
            throw std::out_of_range("pop from empty deque");
        }
        Node* temp = rear;
        rear = rear->prev;
        if (rear == nullptr) {
            front = nullptr;
        } else {
            rear->next = nullptr;
        }
        int data = temp->data;
        delete temp;
        return data;
    }

    int popleft() {
        if (is_empty()) {
            throw std::out_of_range("popleft from empty deque");
        }
        Node* temp = front;
        front = front->next;
        if (front == nullptr) {
            rear = nullptr;
        } else {
            front->prev = nullptr;
        }
        int data = temp->data;
        delete temp;
        return data;
    }

    int peek() const {
        if (is_empty()) {
            throw std::out_of_range("peek from empty deque");
        }
        return front->data;
    }

    int peeklast() const {
        if (is_empty()) {
            throw std::out_of_range("peeklast from empty deque");
        }
        return rear->data;
    }

    bool is_empty() const {
        return front == nullptr;
    }

    size_t size() const {
        size_t count = 0;
        Node* current = front;
        while (current) {
            count++;
            current = current->next;
        }
        return count;
    }
};

5. 双向队列的应用

双向队列在计算机科学中有着广泛的应用,以下是一些常见的应用场景:

(1)滑动窗口问题

在处理滑动窗口问题时,双向队列可以高效地维护窗口内的最大值或最小值。例如,使用双向队列可以实现一个时间复杂度为O(n)的滑动窗口最大值算法。

(2)回文检查

双向队列可以用于检查字符串是否为回文。通过在队头和队尾同时进行操作,可以高效地判断字符串是否对称。

(3)任务调度

在任务调度中,双向队列可以用于管理任务的优先级。高优先级的任务可以插入到队头,低优先级的任务可以插入到队尾。

(4)图的广度优先搜索(BFS)

在图算法中,双向队列可以用于实现广度优先搜索。队列存储待访问的节点,确保节点按照到达的顺序被访问。

6. 双向队列的优缺点

优点:

  • 灵活操作:支持在队列的两端进行插入和删除操作。
  • 高效实现:所有操作的时间复杂度为O(1)。
  • 适用广泛:在许多算法和数据处理中都非常有用。

缺点:

  • 实现复杂:链表实现的双向队列需要管理节点的分配和释放。
  • 功能有限:虽然比普通队列灵活,但仍然不支持随机访问。

7. 总结

双向队列是一种灵活的线性数据结构,允许在队列的两端进行插入和删除操作。它可以通过数组或链表实现,支持高效的操作(如 appendappendleftpoppopleft)。双向队列在滑动窗口问题、回文检查、任务调度和广度优先搜索中有着广泛的应用。理解双向队列的特性和操作方法,有助于更好地使用它来解决各种编程问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值