什么是人工智能?

什么是人工智能?

一、概述

​ 人工智能是一个非常宽泛的内容,我们在电影中所看到的机器人是人工智能的一种,我们的小爱同学,siri也是人工智能的一种,那么什么是人工智能呢?

​ 在 The Quest for ArtificialIntelligence: A History of Ideas and Achievements 中,Nils Nilsson写道:''人工智能可能缺少统一的定义…对我来说,人工智能就是使机器变得智能,智能就是帮助实体在环境中恰当的运转,并对周围环境具备预见性。"

​ 我们可以从人工智能的字面意识来说,人工智能是人工创造出来的智能。比如可以让机器有人类一样的情感,有一样的思考能力,可以说话,可以看见世界,可以感知周边的一切等等。

二、人工智能的早期发展历史

20世纪50年代:

​ 1950年:Alan Turing 发表了 COMPUTING MACHINERY AND INTELLIGENCE,提出了 “一个考虑机器是否可以思考的问题”。这一建议后来成为图灵测试,图灵测试成为人工智能哲学的重要组成部分,人工智能在机器中讨论智能,意识和能力。请添加图片描述

​ 1952年:计算机科学家Arthur Samuel 开发了一种跳棋计算程序 —— 第一个独立学习如何玩游戏

​ 1955年: Allen Newell(研究员),Herbert Simon(经济学家)和Cliff Shaw(程序员)共同撰写了第一个人工智能计算机程序逻辑理论家

​ 1956年夏季: 人工智能的诞生,在Dartmouth大学,由J.McCarthy、M.L.Minsky 、N.Lochester 、C.E.Shannon 发起的一场会议,会议中J.McCarthy提议正式采用 Artificial Intelligence这一个术语

​ 1958年: McCarthy开发了Lisp,这是人工智能研究中最受欢迎且最受青睐的编程语言

​ 1959年:Samuel在谈到编程计算机以比编写程序的人更好地进行国际象棋游戏时创造了“机器学习”一词

20世纪60年代:

​ 人工智能领域的创新在20世纪60年代迅速发展,人们越来越对新的编程语言,机器人和自动机,以及描绘人工智能的电影感兴趣。

​ 1961年:George Devol 发明了第一个在新泽西州通用汽车配线上工作的机器人,它的职责包括从装配线运输压铸件并将零件焊接到汽车上,这一任务对人类是非常危险的

​ 1961年:计算机科学家兼教授James Slagle开发了SAINT(符号自动INTegrator),这是一个启发式问题解决方案,其重点是新生微积分中的符号整合

​ 1964年:计算机科学家Daniel Bobrow创建了STUDENT,一个用Lisp编写的早期AI程序,解决了代数词问题

​ 1965年:计算机科学家兼教授Joseph Weizenbaum开发了ELIZA,这是一个交互式计算机程序,可以用英语在功能上与英语交谈。Weizenbaum的目标是证明人工智能思维与人类思维之间的沟通是“肤浅的”,但发现许多人将拟人化特征归因于ELIZA

请添加图片描述

​ 1966年:由Charles Rosen在其他11人的帮助下开发的机器人Shakey是第一个通用移动机器人,也被称为“第一个电子人”

​ 1968年:计算机科学教授Terry Winograd创建了早期自然语言计算机程序SHRDLU

20世纪70年代:

​ 1970年: WABOT-1,第一个拟人机器人,在日本早稻田大学建造。它的功能包括可移动的肢体,能够看到和交谈的能力

​ 1979年:斯坦福推车,一个遥控,配备电视的移动机器人,由当时的机械工程研究生詹姆斯·L·亚当斯于1961年创建。1979年,一个“滑块”或机械旋转,将电视摄像机从侧面移开 -当时的博士生汉斯莫拉维克补充道。在大约五个小时内,购物车成功地越过了一个没有人为干扰的充满椅子的房间,使其成为最早的自动驾驶汽车的例子之一。

20世纪80年代:

​ 人工智能的快速增长一直持续到20世纪80年代。尽管人工智能背后的进步和兴奋,但是也不可避免的“人工智能冬季”,这是一个资金减少和人工智能兴趣的时期。

​ 1980年: WABOT-2在早稻田大学建成。WABOT的这一开始允许人形机器人与人交流以及阅读乐谱并在电子琴上播放音乐

请添加图片描述

​ 1984年:在人工智能促进协会(AAAI)上,Roger Schank(AI理论家)和Marvin Minsky(认知科学家)警告人工智能冬季,人工智能研究的兴趣和资金将首先减少。他们的警告在三年内实现了

​ 1986年:梅赛德斯 - 奔驰在Ernst Dickmanns的指导下建造并发布了一辆配备摄像头和传感器的无人驾驶厢式货车。它能够在没有其他障碍物和人类驾驶员的道路上行驶高达55英里/小时

​ 1988年:计算机科学家和哲学家Judea Pearl发表了“智能系统中的概率推理”.Pearl还发明了贝叶斯网络,这是一种“概率图形模型”,通过有向无环图(DAG)表示变量及其依赖关系

​ 1988年:两位聊天机器人Jabberwacky和Cleverbot(20世纪90年代发布)的程序员和发明者Rollo Carpenter开发了Jabberwacky,以“以有趣,有趣和幽默的方式模拟自然人类聊天”。这是通过聊天机器人与人沟通的AI示例

20世纪90年代:

​ 1995年:计算机科学家理查德华莱士开发了聊天机器人ALICE(人工语言互联网计算机实体),灵感来自Weizenbaum的ELIZA。ALICE与ELIZA的区别在于增加了自然语言样本数据收集

​ 1997年:计算机科学家Sepp Hochreiter和JürgenSchmidhuber开发了长短期记忆(LSTM),这是一种用于手写和语音识别的递归神经网络(RNN)架构

请添加图片描述

1997年:由IBM开发的国际象棋电脑Deep Blue成为第一个赢得国际象棋比赛并与卫冕世界冠军相匹敌的系统

这里只介绍50年代到90年代的AI发展史,有兴趣的小伙伴可以自己搜索看看

三、人工智能的等级

​ 目前从人工智能的发展趋势来看,可以把人工智能划分成三个等级:弱人工智能(ANI)、强(通用)人工智能(AGI)、超级人工智能(ASI)

弱人工智能(Artificial Narrow Intelligence):

​ ANI是迄今为止成功完成的人工智能技术,ANI被设计出来用来执行单个任务并且以目标为导向。比如说AlphaGo它可以和世界冠军匹敌,但是你要是问他“人工智能是什么?”他就不知道该怎么回答你,还有一些语音助手、人脸识别这都属于ANI的范畴

强人工智能(Artificial General Intelligence):

​ AGI是指在各方面都能和人类比肩的人工智能,具有通用人工思维的智能。人类能干的脑力活它都能干,但是创造AGI比创造ANI难的多,我们现在还不能完全做到。目前很火的ChatGPT、星火大模型、文心一言都属于这一范畴

超人工智能(Artificial Superintelligence):

​ Nick Bostrom把超级智能定义为“在几乎所有领域都比最聪明的人类大脑都聪明的多,包括科学创新、通识和社交技能。” ASI可以是各方面都比人类强亿点,并且具有自我意识,这也是很多科幻电影中出现的AI取代人类的原因

四、人工智能的主要研究领域

算法层面:

​ AI离不开数据,同时也离不开算法,在算法层面大致有:机器学习ML(machine learning),深度学习DL(Deep learning),强化学习RL(Reinforcement learning),在早期的人工智能阶段,AI≈ 统计学 + 数据挖掘 + 算力 + 计算机科学,也可以简单的理解成在数据上的概率游戏,在后来AI的火爆,也是深度学习不断颠覆的时代,视觉领域的yolo家族,CNN,RCNN家族不断迭代进化,强化学习的DQN,NLP领域的2018年谷歌提出的Bert等等

机器学习ML:

​ 机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务

​ 机器学习直接来源于早期的人工智能领域,传统的算法包括决策树、聚类、贝叶斯分类、支持向量机、EM、Adaboost等等。从学习方法上来分,机器学习算法可以分为监督学习(如分类问题)、无监督学习(如聚类问题)、半监督学习、集成学习、深度学习和强化学习

深度学习DL:

​ 最初的深度学习是利用深度神经网络(DNN)来解决特征表达的一种学习过程。深度神经网络本身并不是一个全新的概念,可大致理解为包含多个隐含层的神经网络结构。目前,DNN演化出了许多不同的网络拓扑结构,包括:卷积神经网络(CNN)、递归神经网络(RNN)、长期短期记忆网络(LSTM)、生成对抗网络(GAN)等

​ 深度学习是一种机器学习的技术,也是现在机器学习最常用的一些手段。目前,深度学习在计算机视觉,语音识别,自然语言处理(NLP)等领域取得了使用传统机器学习算法所无法取得的成就

强化学习RL:

​ 强化学习,是机器学习的技术之一,强化学习是智能体自主探索环境的状态,采取的行为作用于环境并从环境中获得回报的过程,AlphaGo最底层最核心的原理就是强化学习,对亿Alpha来说,它会提前学习非常多的棋谱,当它决定一个棋子应该放在哪里的时候,他就会计算,假如放在哪个位置,所得到的奖励值是多少,它会在把棋子下在奖励值最高的位置

​ 对于强化学习来说,学习系统没有像很多其他形式的机器学习方法一样被告知应该做出什么行为,必须在尝试了之后才能发现那些行为会导致奖励最大化,当前的行为可能不仅仅会影响即时奖励,还会影响下一步的奖励以及后续的所有奖励

迁移学习TL:

​ 通俗来讲就是学会举一反三的能力,通过运用已有的知识来学习新的知识,其核心是找到已有知识和新知识之间的相似性,通过这种相似性的迁移达到迁移学习的目的。世间万事万物皆有共性,如何合理地找寻它们之间的相似性,进而利用这个桥梁来帮助学习新知识,是迁移学习的核心问题

​ 比如在某些机器学习的场景中,从头开始学习的成本太高,我们更希望运用已经有的相关知识辅助尽快的学习新知识比如,已经会下中国象棋,就可以类比着来学习国际象棋;已经会编写Java程序,就可以类比着来学习C#;已经学会英语,就可以类比着来学习法语;已经学会了骑自行车,就可以类比学习骑摩托车。正是通过两种事物之间的相似性,可以构建一种从旧知识到新知识的迁移桥梁,从而可以更快更好的学习新知识

请添加图片描述

子领域:

​ 我个人认为AI的主要方向为计算机视觉、自然语言处理、数据挖掘这几个大的方向

计算机视觉(CV, Compute Vision):

​ CV就是通过计算机来模拟人的视觉工作原理,来获取和完成一系列图像信息处理的机器。这也是我个人目前的研究方向,主要处理图像的识别、理解、目标追踪、目标检测等问题

​ CV的子方向包括:图像分类、图像分割、图像内容理解、姿态估计、SLAM和自动驾驶等等,由于我个人对CV方向研究的较多,就展开来聊一聊

图像分类:

​ 图像分类是计算机视觉中最基础的一个任务,也是几乎所有的基准模型进行比较的任务,从最开始比较简单的10分类灰度图像手写数字识别mnist,到后来更大一点的10分类cifar10到100分类的cifar100,到后来的imagenet,图像分类任务伴随数据库的增长,一步步发展到今天的水平,论文详见:https://image-net.org/static_files/papers/imagenet_cvpr09.pdf

​ 现在的imagent的图像分类水准已经超过了人类,总体来说,对于二分类问题,图像分类可以分为,跨物种语义级图像分类,子类细粒度图像分类,以及实例级图像分类三大类别

传统的机器学习方法:

​ 通过各种经典的特征算子+经典分类器组合学习,如HoG + SVM

深度学习方法:

​ 2012年Alexnet诞生,意味着GPU训练时代的来临,于LeNet5的5层相比,他的层数增加了3层,网络的参数量也大大增加,输入从32变成了224

​ 2014年VGG诞生,它共包含参数约为550M。全部使用33的卷积核和22的最大池化核,简化了卷积神经网络的结构。VGG很好的展示了如何在先前网络架构的基础上通过增加网络层数和深度来提高网络的性能,网络虽然简单,但是却异常的有效,在今天VGG仍然被很多的任务选为基准模型

​ 同一年GoogleNet诞生,也被成为Inception Model,它的核心是Inception Module。一个经典的inception 结构,包括有四个成分,11卷积,33 卷积, 55 卷积,33 最大池化,最后对运算结果进行通道上组合,可以得到图像更好的表征。自此,深度学习模型的分类准确率已经达到了人类的水平(5%~10%)

​ 2015年,ResNet被提出。ResNet以 3.57%的错误率表现超过了人类的识别水平,并以152层的网络架构创造了新的模型记录。由于resnet采用了跨层连接的方式,它成功的缓解了深层神经网络中的梯度消散问题,为上千层的网络训练提供了可能

​ 2016年ResNeXt诞生,101层的ResNeXt可以达到ResNet152 的精确度,却在复杂度上只有后者的一半,核心思想为分组卷积。即首先将输入通道进行分组,经过若干并行分支的非线性变换,最后合并。在resnet基础上,密集连接的densenet将前馈过程中将每一层与其他的层都连接起来。对于每一层网络来说,前面所有网络的特征图都被作为输入,同时其特征图也都被其他网络层作为输入所利用

图像分类已经接近了算法的极限,但是在实际的应用中却面临着更多的问题等

目标检测:

​ 分类任务给出的是整张图片的内容描述,而目标检测任务则关注图片中特定的目标。与计算机视觉领域的大部分算法一样,目标检测也经历从传统的个人工设计特征和浅分类器的思路,到深度神经网络进行特征学习的思路

​ 在传统方法的时代,很多任务不是一次性解决,而是需要多个步骤的。但是深度学习时代,很多任务都是采用End To End的方案,即输入一张图,输出最终想要的结果,算法的细节和学习的过程都给了神经网络,这一点在物体检测这个领域,体现的尤为明显

​ 目标检测算法一般来说都会有三个模块,第一个是检测窗口的选择,第二个是图像特征的提取,第三个是分类器的设计

​ 传统的机器学习方法:

​ 2001年迈克尔·琼斯提出Viola–Jones object detection framework是第一种可以实时处理并给出很好的物体检出率的物体检测的方法,也是首次把检测做到实时的框架,此方法在OpenCV中被实现为 cvHaarDetectObjects() 检测速度非常快,召回率相对于现在的算法来说还是比较低的

​ 深度学习方法:

​ 无论是传统的学习方法还是深度学习方法,都需要解决区域选择、特征提取、分类回归的三个问题。但是在演变的过程中,发展出了multi-stage 和 one-stage方法。multi方法,是分步骤完成上面的任务,甚至需要单独训练网络,但是one-stage方法,是一步到位的

​ RCNN的框架是multi-stage方法的典型代表,它使用了Selective search先生成候选区域再检测,候选窗口的数量被控制在了2000个左右。选择了这些图像框之后,就可以将对应的框进行resize操作,然后送入CNN中进行训练。由于CNN非常强大的非线性表征能力,可以对每一个区域进行很好的特征表达,CNN最后的输出,使用多个分类器进行分类判断。该方法将PASCAL VOC上的检测率从 35.1% 提升到了53.7%,随后Fast R-CNN提出RoIPooling从整图对应的卷积特征图选取区域特征,解决了重复提取特征的问题。Faster R-CNN则提出Region Proposal, anchors把一张图片划分成n*n个区域,每个区域给出9个不同ratio和scale的proposal,解决了重复提取候选proposal的问题。 RCNN系列在工业届应用非常广泛

​ 以YOLO为代表的方法,没有显式的候选框提取过程。它首先将图片resize到固定尺寸,将输入图片划分成一个7x7的网格,每个网格预测2个边框,对每一个网络进行分类和定位。YOLO方法也经过了许多版本的发展,从YOLO v2到YOLO v8。YOLO的做法是速度快,但是会有许多漏检,尤其是小的目标。所以SSD就在 YOLO的基础上添加了Faster R-CNN的Anchor 概念,并融合不同卷积层的特征做出预测。虽然YOLO和SSD系列的方法没有了region proposal的提取,速度更快,但是必定会损失信息和精度

图像分割:

​ 图像分割属于图像处理领域最高层次的图像理解范畴。所谓图像分割就是把图像分割成具有相似的颜色或纹理特性的若干子区域,并使它们对应不同的物体或物体的不同部分的技术。这些子区域,组成图像的完备子集,又相互之间不重叠

​ 在图像处理中,往往只对图像中的某些区域感兴趣,在此基础上才有可能对目标进行更深层次的处理与分析,包括对象的数学模型表示、几何形状参数提取、统计特征提取、目标识别等

​ 传统方法:

​ 图像分割问题最早来自于一些文本的分割,医学图像分割。在文本图像分割中,我们需要切割出字符,常见的问题包括指纹识别,车牌识别;由于这一类问题比较简单,因为基于阈值和聚类的方法被经常使用。

​ 基于阈值和聚类的方法虽然简单,但因此也经常失效。以graphcut为代表的方法,是传统图像分割里面鲁棒性最好的方法。Graphcut的基本思路,就是建立一张图,其中以图像像素或者超像素作为图像顶点,然后移除一些边,使得各个子图不相连从而实现分割。图割方法优化的目标是找到一个切割,使得移除边的和权重最小。

​ 深度学习方法:

​ 全卷积神经网络(Fully connected Network)是第一个将卷积神经网络正式用于图像分割问题的网络。

一个用于分类任务的深度神经网络通过卷积来不断抽象学习,实现分辨率的降低,最后从一个较小的featuremap或者最后的特征向量,这个featuremap通常为55或者77等大小。而图像分割任务需要恢复与原尺度大小一样的图片,所以,需要从这个featuremap恢复原始图片尺寸,这是一个上采样的过程。由于这个过程与反卷积是正好对应的逆操作,所以我们通常称其为反卷积。

​ 实际上并没有反卷积这样的操作,在现在的深度学习框架中,反卷积通常有几种实现方式,一个是双线性插值为代表的插值法,一个是转置卷积。

目标追踪:

​ 目标跟踪,指的其实就是视频中运动目标的跟踪,跟踪的结果通常就是一个框。目标跟踪是视频监控系统中不可缺少的环节,根据目标跟踪方法建模方式的不同,可以分为生成式模型方法与判别式模型方法

请添加图片描述

生成类方法:生成式模型跟踪算法以均值漂移目标跟踪方法和粒子滤波目标跟踪方法为代表

判别类方法:判别式模型跟踪算法以相关滤波目标跟踪方法和深度学习目标跟踪方法为代表

判别类方法与生成类方法的根本不同在于判别类方法考虑背景信息与目标信息区分来进行判别模型的建立,由于判别类方法将背景与目标进行区分,因此该类方法在目标跟踪时的表现通常更为鲁棒,目前已经成为目标跟踪的主流跟踪方式。判别类方法包括相关滤波,深度学习方法

目标跟踪有一些难点:

​ (1) 目标表征表达问题,虽然深度学习方法具有很强的目标表征能力,但是仍然容易受相似环境的干扰。

​ (2) 目标快速运动,由于很多跟踪的物体都是高速运动,因此既要考虑较大的搜索空间,也要在保持实时性的前提下减小计算量。

​ (3) 变形,多尺度以及遮挡问题,当目标发生很大的形变或者临时被遮挡如何保持跟踪并且在目标重新出现时恢复跟踪。

至于更多的图像降噪,增强等等,在这里我就不进行过多的叙述了

自然语言处理(NLP,Natural Language Processing):

​ 简单来说NLP就是用计算机来处理、理解以及运用人类的语言。没有语言,人类的思维也就无从谈起,所以自然语言处理体现了人工智能的最高任务,只有当计算机具备了处理自然语言的能力时,机器才算实现了真正的智能

NLP类别:

​ 1、文本挖掘:主要包含了文本的分类、聚类、信息抽取、摘要、情感分析以及对挖掘的信息和知识的可视化、交互式的呈现界面,这些统称为文本挖掘任务。

​ 2、信息检索:对大规模文档进行索引。可简单对文档中的词汇,赋予不同的权重来建立索引,也可以使用算法来建立更深层的索引。查询时,首先对输入进行分析,然后在索引里面查找匹配的候选文档,再根据一个排序机制把候选文档排序,最后输出排序得分最高的文档。

​ 3、句法语义分析:针对目标句子,进行各种句法分析,如分词、词性标记、命名实体识别及句法分析、语义角色识别和多义词消歧等。

​ 4、机器翻译:随着通信技术与互联网技术的飞速发展、信息的急剧增加以及国际联系愈加紧密,让世界上所有人都能跨越语言障碍获取信息的挑战已经超出了人类翻译的能力范围。机器翻译因其效率高、成本低满足了全球各国多语言信息快速翻译的需求,从最早的基于规则到二十年前的基于统计的方法,再到今天的基于深度学习(编解码)的方法,逐渐形成了一套比较严谨的方法体系。机器翻译属于自然语言信息处理的一个分支,能够根据一种自然语言自动生成另一种自然语言。目前,谷歌翻译、百度翻译、搜狗翻译等人工智能行业巨头推出的翻译平台逐渐凭借其翻译过程的高效性和准确性占据了翻译行业的主导地位。

​ 5、问答系统:随着互联网的快速发展,网络信息量不断增加,人们需要获取更加精确的信息。传统的搜索引擎技术已经不能满足人们越来越高的需求,而自动问答技术成为了解决这一问题的有效手段。自动问答是指利用计算机自动回答用户所提出的问题以满足用户知识需求的任务,在回答用户问题时,首先要正确理解用户所提出的问题,抽取其中关键的信息,在已有的语料库或者知识库中进行检索、匹配,将获取的答案反馈给用户。

​ 6、对话系统:系统通过多回合对话,跟用户进行聊天、回答、完成某项任务,主要涉及用户意图识别、通用聊天引擎、问答引擎、对话管理系统等技术。此外,为了提现上下文相关,要具备多轮对话能力。同时,为了提现个性化,对话系统还需要基于用户画像做个性化回复。

总的来看,自然语言处理有2大核心任务,自然语言理解(NLU)和自然语言生成(NLG)。对人来说,理解语言是一件很自然的事情,但对机器来说却是很困难的事情。语言的鲁棒性都是导致自然语言理解的主要难点,其中包括:语言的多样性、歧义性、知识依赖、上下文关系等。这些难点也将会带来实际处理时的一系列困难:生成语句的语法结构、语义表达是否准确,信息是否重复等。

数据挖掘(DM, Data Mining):

​ 从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。这个定义包括好几层含义:数据源必须是真实的、大量的、含噪声的;发现的是用户感兴趣的知识;发现的知识要可接受、可理解、可运用;并不要求发现放之四海皆准的知识,仅支持特定的发现问题。

​ 通常数据挖掘任务分为下面两大类:

​ 预测任务:根据其他属性的值,来预测特定属性的值,被预测的属性一般称为目标变量或者因变量,而用来做预测的属性称为明变量或者自变量

​ 描述任务:概括数据中的潜在联系的模式(相关、趋势、聚类、轨迹和异常),本质上,描述性数据挖掘任务通常是探查性的,并且常常需要后处理技术验证和结果解释

五、总结

​ 总的来说,人工智能是一个令人兴奋且不断发展的领域,它已经在各个领域产生了深远的影响,从医疗保健到交通,再到娱乐和金融。随着技术的不断进步和研究的深入,我们可以期待人工智能将继续改变我们的生活和社会。未来,强人工智能的发展可能会带来更大的变革,但我们也需要审慎考虑伦理和社会问题,以确保人工智能的发展是符合人类利益的。

### 回答1: 人工智能(Artificial Intelligence,简称AI)是指通过计算机程序或机器设备来实现类似于人类智能的一种技术。它可以模拟人类的思维能力,例如理解自然语言、识别图像、决策推理等等。 机器学习(Machine Learning)是一种实现人工智能的方法,它是指让计算机通过大量的数据学习,从而改进其性能和表现的过程。机器学习通过训练数据来自动调整和优化算法,使其能够完成特定的任务。例如,可以通过机器学习来训练计算机自动识别图像中的物体或语音中的文字。 机器学习是实现人工智能的重要方法之一。通过机器学习算法,可以让计算机从海量的数据中自动发现规律和模式,从而实现更加准确和智能的决策和预测。 ### 回答2: 人工智能是一种模拟人类智能行为的技术,旨在使计算机能够执行需要智能思考或判断的任务。它使计算机具备识别、理解、学习和推理等能力,从而使其能够完成复杂的任务。 而机器学习是人工智能的一个分支,它是通过使用算法和统计模型,使计算机能够从数据中学习和改进,而无需明确进行编程。机器学习的目标是通过训练模型来使计算机具备自主处理和解决问题的能力,而不是进行明确的指示。 人工智能和机器学习有着密切的关系。首先,机器学习是实现人工智能的关键技术之一。通过机器学习,计算机可以从大量的数据中提取模式和规律,快速学习并改进自己的行为。 其次,人工智能和机器学习相互促进发展。机器学习在实现人工智能的同时,不断为人工智能提供更多的数据和算法支持,使之更加智能和强大。而人工智能的应用场景也为机器学习提供了更多的实践和应用需求,推动了机器学习的发展和创新。 总结来说,人工智能是模拟人类智能行为的技术,而机器学习是实现人工智能的关键技术之一。它们相互依存,相互促进,共同推动了人工智能领域的快速发展和应用。 ### 回答3: 人工智能(Artificial Intelligence,简称AI)指的是模拟人的智能行为和思维的技术和系统。它的目标是使机器具备类似人类的智慧能力,能够感知、理解、学习、推理和决策。人工智能的研究领域包括机器视觉、自然语言处理、专家系统等。 机器学习(Machine Learning)是人工智能的一个重要分支,是通过让计算机根据大量数据和经验不断优化算法,从而使计算机自动提取数据的规律和模式,从而进行预测、分类、识别等任务。机器学习通过训练样本的学习可以提高算法的准确性和性能,并能够适应新的问题和数据。 人工智能和机器学习之间存在密切关系。人工智能是一个更广泛的概念,指的是使计算机模拟人的智能,而机器学习是实现人工智能的一种方法和技术手段。机器学习是人工智能的基础,通过机器学习算法,计算机能够从大量数据中学习,发现数据中隐藏的模式和规律,并能够自动调整算法以适应新的数据和问题。因此,机器学习是实现人工智能的核心技术之一。 总之,人工智能是一门研究如何使计算机具备智慧能力的学科,而机器学习则是实现人工智能的一种方法。他们之间互为补充,机器学习提供了实现人工智能的技术基础。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值