ST算法

对于一个数组a[1],a[2],a[3]......构建一个Sparse Table表

i12345678
a53796412
t053796412
t13376411 
t233411   
t31       

其中ti,j表示的是aj,aj+1,,......aj+2^i 的最小值,首先求出满足2^i<=y-x<2^(i+1),然后min(t_(i,x),t_(i,y-2^i+1))就是ax到ay区间的最小值.......i=(int)(log(y-x+1)/log2);

void Init(){

    for(int i = 0; i < n; i++)
      d[i][0] = a[i];
    for(int j = 1; (1<<j) <= n; j++)
      for(int i = 0; i+(1<<j) <= n; i++)
       d[i][j] = min(d[i][j-1], d[i+(1<<(j-1))][j-1]);
}
int RMQ(int l, int r){
    int k = 0;
    while((1<<k) <= r-l+1)k++;
    k--;
    return min(d[l][k], d[r-(1<<k)+1][k]);
}

预处理思想,复杂度o(nlogn),查询复杂度o(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值