利用torchinfo torchstat打印模型信息

57 篇文章 5 订阅 ¥39.90 ¥99.00
本文介绍如何使用torchinfo和torchstat工具来详细分析PyTorch模型,包括计算模型的参数量和FLOPs,以评估模型的计算复杂度。
摘要由CSDN通过智能技术生成

模型的计算复杂度可以通过:参数量和FLOPs(浮点运算的总量)

def print_info(model,input):
    """
    打印模型的信息
        model=nn.Sequential(
        nn.Conv2d(3,64,3,1,1),
        nn.Conv2d(64,64,3,1,1),
        nn.Conv2d(64,3,3,1,1)
    )
    x=torch.rand(1,3,96,96)
    print_info(model,x)
    """
    from torchstat import stat
    from torchinfo import summary
    if torch.is_tensor(input):
        if input.dim()>3:
            print('summary model info')
            summary(model,input.shape)
            input=input.squeeze(0)
        print('stat model info ')
        stat(model,input.shape)
    else:
        print('输入信息错误')

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一壶浊酒..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值