自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Vincent Lai的博客

生命是长期而持续的累积

  • 博客(183)
  • 资源 (11)
  • 论坛 (1)

原创 【统计学】皮尔森相关系数公式理解

皮尔森相关系数公式文字描述:相关性系数(Px,y)等于X,Y之间的协方差cov(X,Y)除以它们各自标准差的乘积(σX,σY)1. 先解释分子,为什么用协方差?因为我们想要研究的两组数据的相关性,两个组数据如果相关的的话,要满足的最基本的条件:变化趋势相似(例如正相关或负相关)而协方差就可以告诉我们这一点,协方差的公式为:文字描述为:如果有X,Y两个变量,每个时刻的“X值与其均值之差”乘以“Y值与其均值之差”得到一个乘积,再对这每时刻的乘积求和并求出均值如果X,Y的变化趋势是有规律的话,例如

2020-06-17 14:08:52 359

原创 【数学】通俗解释布丰投针实验过程及python仿真代码

很郁闷为什么网上的布丰投针都写的这么复杂,而且很多都是复读机直接copy别人,其实这是个很精巧、有趣的实验,所以打算自己写一个布丰投针的介绍故事背景你在教室里写数学题,突然有个人,抱着一大盒针走过来,然后把针撒到地上,然后很淡定地点点头说,“嗯,我知道π等于多少了”。是不是觉得很神奇?!这跟π什么关系?!!!没错,这个人就是布丰。实验过程这个实验也很简单,两段距离为D的平行线、一根长为L的针(L≤D)投针实验就是把这根针扔到两段平行线之间,然后统计针碰到平行线的次数,例如图中的两根针,红色针

2020-06-12 16:16:55 782

原创 【机器学习】西瓜书集成学习的误差-分歧分解公式推导

前言原文中,根据公式(8.28)写出了集成的“分歧”定义为:A‾(h∣x)=∑i=1Twi(hi(x)−H(x))2\overline A(h|x) = \sum\limits_{i=1}^{T}w_i(h_i(x)-H(x))^2A(h∣x)=i=1∑T​wi​(hi​(x)−H(x))2结果在公式(8.31)突然变成,将分歧和误差联系上了,看得我非常懵逼A‾(h∣x)=∑i=1TwiE...

2019-12-23 19:38:07 477 4

原创 【目标检测】Ubuntu16.04+RTX2070+CUDA10.0+pytorch1.1搭建CenterNet环境

环境安装https://github.com/xingyizhou/CenterNet/issues/404

2019-10-22 12:04:14 3085 12

原创 【自动驾驶】卡尔曼滤波直观理解、数学公式及代码理解

因为最近在找自动驾驶相关的实习,发现大多数会要求懂卡尔曼滤,之前做过Udacity上无人驾驶课程的项目,所以写下这篇文章当作复习下———————————————我是分割线——————————————————故事有一天,你的好朋友小明数学公式接下来我们认真看一下卡尔曼滤波的公式,分为Station prediction(状态估计)与Measurement update(测量更新)两部分:...

2019-09-19 17:03:06 577

原创 【信息论】互信息I(X;Y)中H(X)怎么推导出来——p(x)怎么变成p(x,y)

在研究互信息I(X;Y)时,存在:I(X;Y)=H(X)−H(X∣Y)I(X;Y)=H(X)-H(X|Y)I(X;Y)=H(X)−H(X∣Y)推导过程为:H(X)=−∑xp(x)log2p(x)H(X) = -\sum_{x}{p(x)log_2{p(x)}}H(X)=−x∑​p(x)log2​p(x)H(X∣Y)=−∑x∑yp(x,y)log2p(x∣y)H(X|Y) = -\sum_{...

2019-06-16 21:01:30 4669 1

原创 【计算机视觉】从图形角度理解直方图均衡化过程

上课的时候很不理解为什么累积分布函数可以实现均衡化,百度了很久终于搞懂了,记录一下自己的理解,希望能帮到以后的人下面没有数学公式推导,希望能帮大家能从图形的角度去理解直方图均衡化的过程(电脑作图太麻烦了,我直接手画,请谅解哈哈)————————————————下面开始——————————————————下面两张图,左上角是原图(对,原本就是灰色的),右上角是经过直方图均衡化处理后的结果,可...

2019-03-15 21:15:18 978

原创 【Kaggle】参加竞赛基本流程(以Titanic为例)

前言第一次参加Kaggle的时候,看了很多入门帖,但是还是看不懂不知道到底怎么参加,是在Kaggle上提交代码吗,像互联网公司程序员在线考试一样?还是提交预测的结果?没有一个像”Hello World”一样简单但是又完整的流程,因此写了这篇文章,大家不用理解代码的含义,只用复制现成的代码,简单的四步过下流程,熟悉下如何参加Kaggle即可0.运行环境:Win8 Python3...

2018-02-12 22:38:32 11971 5

原创 【Python】装饰器通俗解释

【Python三分钟】什么是装饰器?

2020-10-17 00:44:39 12

原创 【MySQL】在workbench中导入csv时报错:unhandled exception:(u“,)

问题在workbench中导入csv时报错:unhandled exception:(u",)解决办法初次使用MYSQL的workbench,导入csv时遇到的几个问题

2020-09-08 16:52:34 82 1

原创 【Python】实现排列组合

import itertoolsres = []for i in itertools.permutations('123', 3): res.append(''.join(i))# 输出 ['123', '132', '213', '231', '312', '321']print(res)参考:python解决排列组合

2020-08-31 09:59:25 39

原创 【Docker】安装步骤及遇到的问题

安装步骤参考:Ubuntu Linux 安裝 Docker 步驟與使用教學问题docker version输入上面指令时,出现下面报错:Got permission denied while trying to connect to the Docker daemon socket at unix:///var/run/docker.sock: Get http://%2Fvar%2Frun%2Fdocker.sock/v1.39/version: dial unix /var/run/dock

2020-08-30 21:46:26 42

原创 【Pytorch】 Attempting to deserialize object on a CUDA device but torch.cuda.is_available()

torch.loads

2020-08-18 10:50:21 78

原创 【MySQL】基本使用

安装过程:【MySQL】Win8安装过程及遇到的问题课程:一天学会 MySQL 数据库指令速查:MySQL 教程MySQL命令不区分大小写~登陆与退出账号名为root,密码为100mysql -uroot -p110exit;创建、删除、显示、选择数据库创建create DATABASE test;删除drop database test;显示show databases;选择use test查看、创建、删除数据表P.S. 先要进入到指定的数据库查看所有表格

2020-08-12 22:31:36 33

原创 【MySQL】Win8安装过程及遇到的问题

安装教程https://blog.csdn.net/qq_37350706/article/details/81707862#%E5%85%88%E5%8E%BB%E5%AE%98%E7%BD%91%E4%B8%8B%E8%BD%BD%E7%82%B9%E5%87%BB%E7%9A%84MySQL%E7%9A%84%E4%B8%8B%E8%BD%BD%E2%80%8B问题1:安装MySQL出现”无法启动此程序,因为计算机中丢失VCRUNTIME140_1.dll。尝试重新安装该程序以解决此问题。“解决

2020-08-12 17:06:42 93

原创 【Python】json文件读写

读jsonimport jsonjson_file = ''with open(json_file, 'r', encoding='utf8') as fp: json_data = json.load(fp)写jsonimport jsonjson_file = '1.json'dict1 = [{'name': 'Tom', 'age': 10}, {'name': 'Marry', 'age': 18}]with open(json_file,'w',encoding='ut

2020-07-28 19:57:00 75

原创 【Python】带负数的切片操作速记

只要记住后面的式子就好了:[start_index: stop_index: step]start_index是切片的起始位置stop_index是切片的结束位置(不包括)step可以不提供,默认值是1,步长值不能为0,不然会报错ValueError例如,a = [1,2,3,4,5]a[-2:]表示start_index=-2,一直取值到结束,step=1,所以结果为[4,5]a[:-2]表示stop_index=-2,start_index为默认的0,step=1,所以结果为[1,2,3]

2020-07-05 20:01:27 156

原创 【Python】合并多张图片为一行/一列

import cv2import numpy as npdef concatenate_img(img_list, img_name, axis=1): img_list = [cv2.imread(img) for img in img_list] img = np.concatenate(([i for i in img_list]), axis=axis) cv2.imwrite(img_name, img)img_list = [''] # 图片的本地地址# 合并

2020-06-07 21:19:28 156

原创 【Python】直方图绘制代码

#绘制直方图def drawHist(heights):#创建直方图#第一个参数为待绘制的定量数据,不同于定性数据,这里并没有事先进行频数统计#第二个参数为划分的区间个数bins = np.arange(0, 1.01, 0.01)n, bins, patches = pyplot.hist(heights, bins)pyplot.xlabel(‘归一化后数值’)pyplot.ylabel(‘频次’)pyplot.title(‘第5天归一化后数值区间统计’)pyplot.show()

2020-06-05 15:31:23 87

原创 【Python】正则表达式快速调用

提取DetectedText后的结果import redata = '{"TextDetections": [{"DetectedText": "梁非凡也有了质疑", "Confidence": 99, "Polygon": [{"X": 264, "Y": 42}, {"X": 420, "Y": 42}, {"X": 420, "Y": 63}, {"X": 264, "Y": 63}], "AdvancedInfo": "{\"Parag\":{\"ParagNo\":1}}", "ItemPol

2020-06-04 12:12:12 58

原创 【Python】通过pyhanlp提取关键词

from pyhanlp import *# 关键词提取def extractKeyword(document, keyword_num=2): return HanLP.extractKeyword(document, keyword_num)if __name__ == '__main__': document = '' # 返回list形式 keywords = list(extractKeyword(document keyword_num=2)) # 若需要进一步处理变成

2020-06-03 12:16:13 147

原创 【Python】获得某一目录下的所有图片(按照图片名字排序)

import osimg_folder = ''img_list = [os.path.join(img_folder, nm) for nm in os.listdir(img_folder) if nm[-3:] in ['jpg','png','gif']]img_list.sort()建议大家图片命名的时候不要简单的用单个数字,这样在图片sort排序的时候,会出现11.jpg排在2.jpg前面建议加上zfill()避免上述的排序问题idx = 1img_name = str(idx)

2020-06-03 12:03:20 246

原创 【Python】腾讯云调用API接口获得OCR信息

import osimport refrom tencentcloud.common import credentialfrom tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentCloudSDKException# 导入对应产品模块的 client models。from tencentcloud.common.profile.client_profile import ClientProfileim

2020-06-03 11:35:11 198

原创 【Python】Python保存和读取字典

突然发现了一个保存字典很爽的方法,直接用.pkl保存import pickledef save_obj(obj, name): with open(name + '.pkl', 'wb') as f: pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)def load_obj(name): with open(name + '.pkl', 'rb') as f: return pickle.load(f)

2020-05-31 23:19:48 466

原创 【Python】pyUserInput模拟鼠标键盘

安装pyUserInput方法

2020-05-27 16:05:33 145

原创 【Flask】搭建服务过程笔记

json中load和loads区别Python Flask Web 框架入门:https://blog.csdn.net/sinat_38682860/article/details/82354342

2020-05-26 11:30:13 46

原创 【Lucene】Lucene环境安装及使用(win10)

常用Lucene介绍、下载、环境配置:Lucene安装及环境配置Lucene测试:windows上运行 Lucene 7.4 demo遇到的坑进了download页面后,还要继续选择下载的内容(那个“Download”按钮只是跳到下载页面,不是开始下载!)选择zip设置Lucene环境变量时,是具体到每一个.jar测试的时候,测试的文本是放到一个resource文件夹下...

2020-05-22 19:04:04 228

原创 【Anaconda】在命令行输入python后显示Failed calling sys.__interactivehook__

问题描述Python 3.7.6 (default, Jan 8 2020, 20:23:39) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32Type "help", "copyright", "credits" or "license" for more information.Failed calling sys.__interactivehook__Traceback (most recent call last): Fil

2020-05-22 12:06:11 269 1

原创 【Java】配置Java与IDEA

Win10 下载安装配置Java SE 14版本

2020-05-19 20:44:13 74

原创 【目标检测】soft-nms的一个大坑+python变量的赋值+函数传引用机制

soft-nms代码如下:def soft_nms(np.ndarray[float, ndim=2] boxes, float sigma=0.5, float Nt=0.3, float threshold=0.001, unsigned int method=0): cdef unsigned int N = boxes.shape[0] cdef float iw, ih, box_area cdef float ua cdef int pos = 0 cd

2020-05-17 21:56:25 161

原创 【Linux】Ubuntu16.04 conda换源

打开终端,输入命令gedit ~/.condarc然后填入下面的内容show_channel_urls: truessl_verify: truechannels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/ - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge - https://mirrors.tuna.tsinghua.edu.

2020-05-17 01:22:12 1066

原创 【Linux】Ubuntu16.04挂载希捷移动硬盘

问题描述新买的希捷移动硬盘在windows上可以正常使用,但是插到ubuntu上后显示无法挂在,报错大概为:Error mounting /dev/sdc1 at /media/vincent/13686801129: Command-line `mountexited with non-zero exit status 32: mount: unknown filesystem type ...

2020-05-03 10:25:11 345

原创 【目标检测】miss rates和FPPI曲线记录

最早提出FPPI概念的论文:Pedestrian Detection: A Benchmark其实miss rates和FPPI是共同画出来的,图的名字叫做:Miss rates versus false positive per-image curves过去方法的缺陷大多数作者比较每个窗口的性能(即False Positive Per−Window,FPPW)。然而,在实践中,每个窗口的...

2020-04-19 12:00:11 421

原创 【机器学习】如何通过Recall和Precise快速判断自己模型的问题

定义Recall = TP/(TP+FN) , 查全率,反映了被正确判定的正例占总的正例的比重;Precise = TP/(TP+FP),反映了被分类器判定的正例中真正的正例样本的比重;对结果的判断1. 如果Recall高,Precise 低说明正类都能被正确预测,但是一部分负类也被预测成了正类分类器的问题:会偏向于预测正类分类器的优点:对负类的预测是靠谱的、可以找回大多数的正...

2020-04-18 14:26:31 379

原创 【目标检测】绘制FPPI、miss rate数据及代码例子

行人检测一般用FPPI而不是mAP作为评估指标,但是网上找了好久都没找到Python版本的代码,原来FPPI官方的代码是matlab的,这里记录一下用官方的代码来绘制FPPI曲线有哪些需要注意的非常感谢这篇文章:Caltech评估方法评估的方法按照上面那篇文章可以跑通代码,需要注意的是:要下载annotations文件,并解压到../code3.2.1/data-USA中在此处下载别人预...

2020-04-12 21:57:52 764 3

原创 【Pytorch】RuntimeError: one of the variables needed for gradient computation has been modified by

参考:RuntimeError: one of the variables needed for gradient computation has been modified by an inplace o报错RuntimeError: one of the variables needed for gradient computation has been modified by an in...

2020-04-06 15:35:36 305

原创 【Python】对含有中文的txt进行读取

with open(filename, 'r', encoding='utf8') as f: # 以下为每一行单独存放在一个str,info为一个list infor = f.readlines() # 也可以全部存放在一个str里面 # infor = f.read()...

2020-04-04 20:49:31 391

原创 【Python】对数据库MongoDB进行增删查改

参考:Python MongoDB | 菜鸟教程# coding:utf-8import pymongo# 连接mongodmyclient = pymongo.MongoClient("mongodb://localhost:27017/")# 列出所有数据集dblist = myclient.list_database_names()print('列出所有数据集:', dbli...

2020-04-01 17:16:01 82

原创 【Python】调用腾讯云API接口返回人脸属性信息代码例子

腾讯云的人脸检测文档:https://cloud.tencent.com/document/product/867/32800注意:传入本地图片的话,需要把图片转为base64格式# -*- coding: utf-8 -*-from tencentcloud.common import credentialfrom tencentcloud.common.exception.tencen...

2020-04-01 15:28:01 247

原创 【Python】多线程并发共同处理一个大任务代码例子

参考:python多线程执行同一个函数任务之threading、ThreadPoolExecutor.map主要实现的是多个线程同时是完成一个大型任务,代码的思路是把大任务分解,得到每个线程各自需要处理的任务量,然后再把任务函数和任务量分别放入不同线程中如果要换成自己的任务的话,要改的地方:_l = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]换成你自己需要处理的总任务...

2020-04-01 15:20:45 480

.hanlp.zip

pyhanlp模型文件.hanlp,参考https://blog.csdn.net/weixin_38705903/article/details/106521519

2020-06-03

matlab绘制FPPI测试数据

matlab绘制FPPI测试数据,详情看:https://blog.csdn.net/weixin_38705903/article/details/105476251

2020-04-18

PDF编辑器(PDFEdit)

pdf编辑器,可以对pdf进行增页、删页,也可以单独删除pdf内水印

2018-09-09

ZoteroConnector_5.0.40_0

zotero chrome插件是一款专为谷歌浏览器用户打造的文献管理软件,这个是chrome专用版本,安装后就可以在浏览网页的时候将各种文本内容添加到收藏中了,支持对收藏的文献进行分类、管理或者分享等操作,并且支持自动检测重复内容,是专业人士整理文档的好帮手,欢迎有需要的朋友们前来下载使用。

2018-08-18

Vimium_1.63.3_0

Vimium是Vim和 Chromium的结合,Vim是linux中让你脱离鼠标编辑文本的利器,同样Vimium是让你脱离鼠标就能上网的终极利器,你不用移动鼠标就能跳转页面,切换标签,打开历史记录,打开书签等等,这比传统的鼠键结合的方式要快得多

2018-08-18

Chrono下载管理器(资源嗅探器)

Chrono下载管理器是Chrome浏览器下第一款(也是唯一一款)功能全面的下载管理工具。Chrono接管你在Chrome中的所有下载,你的所有下载管理工作都在浏览器中完成,而不需要安装另外的程序。Chrono与Chrome浏览器紧密地整合在一起,添加了对浏览器菜单、工具栏和快捷键的支持。 除了高效管理下载任务,Chrono也是你下载视频或批量下载图片的最好帮助工具。Chrono资源嗅探器可以检测网页上的所有链接、图片、音频和视频,你还可以根据链接的文件类型或正则表达式来筛选你要下载的地址。

2018-08-18

Adblock_Plus_3.2_0

Adblock Plus 是拥有超过 5 亿次下载的全球最受欢迎的广告拦截软件之一。 享受没有恼人广告的网络世界。

2018-08-18

《机器学习实战》源代码+数据+学习计划

《机器学习实战》作者: Peter,人民邮电出版社,内含源代码,测试数据和学习计划

2018-02-01

《模式识别与智能计算》源代码

《模式识别与智能计算》中的的源码,包含 1)书中各章节自编函数(见“《模式识别与智能计算》部分函数的源程序”文件夹) 2)书中较多行的命令(见“《模式识别与智能计算》全书实例的源程序”文件夹)

2018-01-31

基于S3C2410嵌入式MDK开发实验与实践(PDF和PPT讲义)

内含两个文件: 1)基于S3C2410嵌入式MDK开发实验与实践.pdf,是S3C2410使用手册 2)S3C2410讲义.ppt,里面介绍S3C2410X系统结构

2018-01-31

FEAST特征选择算法源码(matlab)

FEAST算法是特征选择算法的一种,全称叫a FEAture Selection Toolbox for C and MATLAB算法,FEAST 提供了基于共同信息的滤波特征选择算法的实现,通过特征选择,可以帮助我们筛选出有用的特征,减少模型训练时间。 函数已经打包好,在matlab中直接调用即可,输入想要的特征个数,会自动返回最优的特征,并且会有一个从优到劣的排序

2018-01-31

求管理员帮忙删除已经上传的资源

发表于 2018-08-18 最后回复 2018-08-20

空空如也
提示
确定要删除当前文章?
取消 删除