Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity.
方法1.最直接的做法就是每次都遍历众多链表的头节点,找出其中最小的一个.假设所有链表的长度为n,那么该算法的时间复杂度为O(n^2).
方法2.用这些链表建立一个最小堆,根节点保存的是最小头节点元素的链表.每次取出根节点链表的第一个元素,放入新的链表中.如果取出后,根节点的链表为空,则将最后一个叶子节点的链表放入根节点.因为根节点的头元素值发生了改变,所以,我们需要从根节点向下调整堆.调整后,依然是最小堆.根据需要,我们只需实现建堆,和向下调整堆.每次调整堆,最多需要从根节点到叶子节点,复杂度为O(logn).因此,该算法的时间复杂度为O(nlogn).
class Solution {
public:
vector<ListNode*> build(vector<ListNode*> &lists) {
vector<ListNode*> v;
for (int i = 0; i < lists.size(); i++) {
if (lists[i]!=NULL) v.push_back(lists[i]);
}
for (int i = v.size()/2-1; i >= 0; i--) {
shiftDown(v,i);
}
return v;
}
void swap(ListNode* & a,ListNode* & b) {
ListNode* tem=a;
a=b;
b=tem;
}
void shiftDown(vector<ListNode*> &lists,int i) {
int child = 2*i+1;
while (child < lists.size()) {
if (child+1 < lists.size() && lists[child+1]->val < lists[child]->val)
child++;
if (lists[child]->val > lists[i]->val)
break;
swap(lists[i],lists[child]);
i=child;
child=2*i+1;
}
}
ListNode* mergeKLists(vector<ListNode*>& lists) {
lists = build(lists);
if (lists.size()==0) return NULL;
ListNode* result=new ListNode(0);
ListNode* l=result;
while(lists[0]) {
l->val=lists[0]->val;
lists[0]=lists[0]->next;
if (lists[0]==NULL) {
lists[0]=lists[lists.size()-1];
lists.pop_back();
}
if (lists[0]) {
l->next=new ListNode(0);
l=l->next;
}
shiftDown(lists,0);
}
return result;
}
};
方法3.使用stl库的堆-priority_queue
struct less_than {
bool operator()(ListNode* a, ListNode* b) {
return a->val > b->val;
}
};
class Solution {
public:
ListNode* mergeKLists(vector<ListNode*>& lists) {
priority_queue<ListNode*,vector<ListNode*>,less_than> q;
for (int i = 0; i < lists.size(); i++)
if (lists[i]!=NULL) q.push(lists[i]);
if (q.size()==0) return NULL;
ListNode* result=new ListNode(0);
ListNode* l=result;
while (q.size()) {
ListNode* top=q.top();
q.pop();
l->val=top->val;
if (top->next)
q.push(top->next);
if (q.size()) {
l->next=new ListNode(0);
l=l->next;
}
}
return result;
}
};