一、二分查找(最简单的查找)
1. 应用条件:
- 必须采用顺序存储结构。
- 必须按关键字大小有序排列。
2. 思想:
- 取中间值划分左右区间,因为元素都是有序的,取中间值划分左右区间,因此左侧都小于中间值,右侧都大于中间值
- 因此为了减少比较次数,每次都让关键字和中间值进行比较
- 相等则找到,不等则判断,小于则在左边区间,大于则在右边区间
- 持续划分区间,直到区间无法划分或者找到
3.步骤
- 准备测试数据
- 创建二分查找函数
- 声明所需的变量
- 边界判断(很重要养成习惯)
- 初始化
- 划分区间
1. 确定一开始的区间【left=0,right=length-1】
2. 取中间值:mid = left + (right - left)/2 (这么写不会超出下标,原来写法为(left + right)/2,会有溢出问题 解释)
3. 和关键字比较arr[mid] ? Key
1. 相等则返回下标mid
2. 小于则表示关键字在右区间(缩小区间),left = mid + 1
3. 大于则表示关键字在左区间(缩小区间),right = mid - 1; - 重复4.2~4.3直到无法划分区间位置即[left,right],right>left;
- 以上都执行完返回-1,表示没有查找到关键字
4. 时间空间复杂度:
- 时间复杂度:n,n/2,n/4,…n/2k, n/2^k=1, ===>k = log2n,O(log2n);
- 空间复杂度:没有额外申请空间也没有递归 O(1);
5. 详细了解二分
代码:
#include<stdio.h>
int BinarySearch(int *arr, int nLength, int Key);
int BinarySearch(int *arr, int nLength, int Key)
{
//声明
int nMid;
int nLeft;
int nRight;
//边界判断
if(arr==NULL || nLength<=0)return -1;
//初始化
nLeft = 0;
nRight = nLength - 1;
while(nLeft <= nRight)
{
nMid = nLeft + (nRight - nLeft)/2;
if(Key > arr[nMid]) nLeft = nMid + 1;
else if(Key < arr[nMid])nRight = nMid - 1;
else return nMid;
}
return -1;
}
int main()
{
int arr[] = {1,2,3,4,5,6,67,677};
BinarySearch(arr, sizeof(arr)/sizeof(arr[0]),6);
return 0;
}
二、哈希查找
1. 思想:
将无序的元素划分按照某一个规则,争取做到每一个元素一个位置,用空间换时间的查找
2. 步骤
一、建立哈希表:
1. 定散列函数:散列函数:将原数组元素映射到哈希表对应位置的函数
a. 求整取余法(留存取余法)p = key % M(M为数据的总个数)
b. 直接地址法:直接把自身当作下标或者自身的函数关系作为下标,hash(k) = k 或 hash(k) = a · k + b
c. 随机数法:
d. 平法取中法:关键字平方然后取中间的几位为下标
2. 定义解决哈希冲突的办法:
a. 开发地址发:核心宗旨,你占我的位置我占别人的
i. 线性探测,沿着冲突的位置+1走到没有冲突的地方
ii. 线性补偿探测,沿着冲突位置+k个走到没有冲突的地方
iii. 线性探测再散列:+-1,+-4,+-9,+-25等一直循环直到找到不冲突的位置即可
iv. 随机探测
b. 拉链法:邻接链表形式(采用头插)
二、查找
数据直接取余M,然后遍历对应指针数组的链表,直接遍历对比即可
算法实现:最简单的实现方式(散列函数采用的是求整取余法,解决哈希冲突问题采用拉链法)
步骤:
1. 确定结构单链表
2. 申请指针数组(原数据大小,目的是使得查找次数变小,做到每个元素一个位置)
3. 链式加入数组,将数据添加到,数据%总个数的这个位置的链表上
search,所要搜索的数据%总个数,然后遍历链表即可。
3.哈希时间空间复杂度
- 时间复杂度:查找的时间复杂度为O(1)
- 空间复杂度:查找的空间复杂度为O(1)
- 哈希表创建的时间复杂度:只遍历了一次数组因此,O(n)
- 哈希表创建的空间复杂度:申请了总共2n个空间,没有递归,因此O(n)
- 注意:创建的时间空间复杂度只是针对我这个代码
4.哈希详细介绍
代码:
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
typedef struct hash
{
int nValue;
struct hash *pNext;
}Hash;
void AddHash(Hash **ppHashArrayHead, int nValue);
Hash **CreateHashTable(int arr[], int nLength);
int Search(Hash **ppHashTable, int nLength, int nKey);
void AddHash(Hash **ppHashArrayHead, int nValue)
{
Hash *pHash = (Hash *)malloc(sizeof(Hash));
pHash->nValue = nValue;
pHash->pNext = *ppHashArrayHead;
*ppHashArrayHead = pHash;
}
Hash **CreateHashTable(int arr[], int nLength)
{
Hash **ppHashArray;
int i;
if(arr==NULL || nLength<=0)return NULL;
ppHashArray = (Hash **)malloc(sizeof(Hash *)*nLength);
memset(ppHashArray, 0, sizeof(Hash *)*nLength);
for(i=0; i<nLength; i++)
{
//求整取余法
//arr[i]%nLength将数组元素添加到哈希表对应的位置上
AddHash(&ppHashArray[arr[i]%nLength], arr[i]);
}
return ppHashArray;
}
int Search(Hash **ppHashTable, int nLength, int nKey)
{
Hash *pTemp = NULL;
if(ppHashTable==NULL)return -1;
pTemp = ppHashTable[nKey%nLength];
while(pTemp)
{
if(nKey == pTemp->nValue)
{
printf("%d\n", nKey);
return 1;
}
pTemp = pTemp->pNext;
}
return -1;
}
int main()
{
int arr[] = {1,5,7,8,9,234,234,546,547,67,876,567,567,567,324,435,456};
Hash **ppHashTable = CreateHashTable(arr, sizeof(arr)/sizeof(arr[0]));
Search(ppHashTable, sizeof(arr)/sizeof(arr[0]), 2);
return 0;
}
三、字典树
1. 思想:
将字符串分解,申请一个树根,将出现的第一个字符都作为他的孩子,其他类推,从根节点到某一节点,路径上经过的字符连接起来,为该节点对应的字符串; 每个节点的所有子节点包含的字符都不相同。
2.作用:查找和排序(狭义上字典)字符串
3.步骤:
1. 创建字典树结构体
a. nCount;//标记
b. struct trie *pCharArray[26];//树的孩子
c. str//最后得到的串
2. 创建字典树
a. 申请树根
b. 按照提供的字符串数组,构造字典树
3. 查找
a. 查看对应的查找串的字符是否在树上出现过,即是否存在指向那个字符的位置存在。
4. 遍历(排序的遍历)采用递归dfs遍历所有节点,把所有的标记大于0的输出
a. for(i=0; i<26; i++)
注意:
1. 字符树最为经典的地方是存储字符本身,而是将字符作为孩子的地址,
而且模仿了二叉树左右孩子的结构,他直接定义了指针数组,
直接表示每个节点都有26个孩子,只要某一个孩子存在就标志着这个位置的字符出现过。
3. 遍历树的时候记得输出在循环外去写,要不会多次输出
4. 注意边界判断
4.时间空间复杂度:
- 时间复杂度: O(1)(比较字符串长度次,可查次数)
- 空间复杂度:O(n)(需要字符长度个空间)
5.详细了解字典树
代码:
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
typedef struct trie
{
int nCount;
char *pStrTrie;
struct trie *pCharTrieArray[26];
}Trie;
Trie *CreateSelectTrie(char **ppStrArray);
int Select(Trie *pRoot, char *pStrFind);
void Traversal(Trie *pRoot);
Trie *GetTrie();
void AddTrie(char *pStr,Trie **ppTrie);
Trie *CreateSelectTrie(char **ppStrArray, int nLength)
{
char *pStr = NULL;
Trie *pRoot;
int i;
if(ppStrArray == NULL || *ppStrArray == NULL || nLength <= 0)return NULL;
pRoot = GetTrie();
for(i=0; i<nLength; i++)
{
AddTrie(ppStrArray[i],pRoot);
}
return pRoot;
}
void AddTrie(char *pStr,Trie *pTrie)
{
int i;
if(pStr==NULL)return;
for(i=0; i<strlen(pStr); i++)
{
if(pTrie->pCharTrieArray[pStr[i]%97] == NULL)
{
pTrie->pCharTrieArray[pStr[i]%97] = GetTrie();
}
pTrie = pTrie->pCharTrieArray[pStr[i]%97];
}
pTrie->nCount++;
pTrie->pStrTrie = pStr;
}
Trie *GetTrie()
{
Trie *pTrie = (Trie *)malloc(sizeof(Trie));
memset(pTrie, 0, sizeof(Trie));
return pTrie;
}
int Select(Trie *pRoot, char *pStrFind)
{
int i;
if(pRoot==NULL || pStrFind==NULL)return;
for(i=0; i<strlen(pStrFind); i++)
{
if(pRoot->pCharTrieArray[pStrFind[i]%97] != NULL)
{
pRoot = pRoot->pCharTrieArray[pStrFind[i]%97];
}
else
{
return -1;
}
}
if(pRoot->nCount > 0)
return 1;
else
return -1;
}
void Traversal(Trie *pRoot)
{
int i=0;
if(pRoot == NULL)return;
if(pRoot->nCount > 0)
{
printf("%s\n",pRoot->pStrTrie);
}
for(i=0; i<26; i++)
{
if(pRoot->pCharTrieArray[i] != NULL)
{
Traversal(pRoot->pCharTrieArray[i]);
}
}
}
int main()
{
char *pStrArray[] = {"asdsaddsf","dsfdsf","dsfdsfsdfsd","rtynhgn"};
Trie *pRoot = CreateSelectTrie(pStrArray, sizeof(pStrArray)/sizeof(pStrArray[0]));
Traversal(pRoot);
Select(pRoot, "asdsaddsf");
return 0;
}