为了解决计算光流的带来的庞大的时间开销问题,这篇论文的主旨是介绍了两种学习方法来训练一个标准的3D CNN,在RGB帧上操作,模拟运动流,从而避免在测试时进行光流计算。
可以看到下图作者给出图标,无论是MARS+RBG还是MERS+RBG,准确率和RGB+TVL1Flow差不多,但时耗小很多。
下面来介绍下MERS和MARS
MERS
MERS是我们最后需要得到的model。所以在此之前我们需要准备一个teacher和一个student(也就是MERS),想让MERS有光流stream的能力,但只想用RGB做输入,那么只好准备好一个训练好的光流stream作为teacher教会MERS了。
文中MERS是一个由3D卷积和fc构成的network。第一步,除了最后一层fc以外,前面的所有层都参与学习光流stream,损失函数为:
f表示各自输出的特征。
训练好后,执行第二步&