《MARS: Motion-Augmented RGB Stream for Action Recognition》阅读笔记

本文介绍了MARS和MERS两种方法,旨在通过3D CNN模拟运动流,减少光流计算的时间开销。实验表明,MARS和MERS在准确率上接近RGB+Flow,但计算效率更高。MERS需分两步训练,而MARS一步即可,表现出更好的性能。
摘要由CSDN通过智能技术生成

文章链接

为了解决计算光流的带来的庞大的时间开销问题,这篇论文的主旨是介绍了两种学习方法来训练一个标准的3D CNN,在RGB帧上操作,模拟运动流,从而避免在测试时进行光流计算。
可以看到下图作者给出图标,无论是MARS+RBG还是MERS+RBG,准确率和RGB+TVL1Flow差不多,但时耗小很多。
在这里插入图片描述
下面来介绍下MERS和MARS

MERS

在这里插入图片描述
MERS是我们最后需要得到的model。所以在此之前我们需要准备一个teacher和一个student(也就是MERS),想让MERS有光流stream的能力,但只想用RGB做输入,那么只好准备好一个训练好的光流stream作为teacher教会MERS了。
文中MERS是一个由3D卷积和fc构成的network。第一步,除了最后一层fc以外,前面的所有层都参与学习光流stream,损失函数为:
在这里插入图片描述
f表示各自输出的特征。
训练好后,执行第二步&

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值