机器学习基础专题:随机变量

术语

样本空间(sample space): Ω \Omega Ω,包含了所有可能出现的结果的集合。比如在掷一次骰子的样本空间可以用{1,2,3,4,5,6}表示。

事件集(event space): F F F,a collection of subsets of Ω \Omega Ω,用来表示出现的结果。事件集未必是样本空间中的单一元素,也可以是复杂元素。比如在掷一次骰子的样本空间中,可以用{1,3,5}表示结果为奇数的事件。

概率函数(probability function): P P P,该函数完成了从事件到该事件发生概率的映射。

概率法则

贝叶斯

A的先验概率(prior probability of A): P(A)

A的后验概率(posterior probability of an event A given B): P(A|B)
P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B) = \frac {P(B|A)P(A)} {P(B)} P(AB)=P(B)P(BA)P(A)

独立事件

事件 A 1 , A 2 ,   . . .   , A n A_1, A_2,\ ...\ , A_n A1,A2, ... ,An相互独立,当且仅当该事件集合的所有子集满足条件 P ( A i 1 , A i 2 ,   . . .   , A i k ) = ∏ j = 1 k P ( A i j ) P(A_{i1}, A_{i2},\ ...\ , A_{ik}) = \prod_{j=1}^k P(A_{ij}) P(Ai1,Ai2, ... ,Aik)=j=1kP(Aij)

最大后验概率

Maximum-a-posteriori (MAP)。

假设 x , y x,y x,y都是离散的。
y ^ = f ( x ) = a r g m a x y p ( y ∣ x ) = a r g m a x y p ( x ∣ y ) p ( y ) = a r g m a x y p ( x , y ) \hat y = f(x) = argmax_y p(y|x) \\\\ = argmax_y p(x|y)p(y) \\\\ = argmax_y p(x,y) y^=f(x)=argmaxyp(yx)=argmaxyp(xy)p(y)=argmaxyp(x,y)
假设 x x x是连续的, y y y是离散的。
y ^ = f ( x ) = a r g m a x y p ( y ∣ x ) = a r g m a x y f ( x ∣ y ) p ( y ) \hat y = f(x) = argmax_y p(y|x) \\\\ = argmax_y f(x|y)p(y) y^=f(x)=argmaxyp(yx)=argmaxyf(xy)p(y)
缺点

  1. 随机变量相互独立的假设通常不成立
  2. 训练集中未出现某个值的样本导致概率为0,可以通过smoothing解决

信息熵

对于每一个事件,我们从它的发生能够获取到的信息是 l o g ( 1 P ( A ) ) log(\frac 1 {P(A)}) log(P(A)1)。这一个公式其实是符合我们的直觉。如果一个事件不常发生,那么当它发生的时候,透露的信息应该会比常见事件透露的信息更多。

信息熵的定义如下,
H ( X ) = − ∑ i = 1 m p ( x i ) l o g 2 p ( x i ) H(X) = -\sum_{i=1}^m p(x_i) log_2 p(x_i) H(X)=i=1mp(xi)log2p(xi)

随机变量

一般来说,我们使用大写字母表示随机变量本身,用对应的小写字母代表该变量的取值。

可以从CDF分辨一个随机变量是离散变量、连续变量、抑或是两者都不是。

在这里插入图片描述

离散变量

满足条件 P ( X ∈ X ) = 1 P(X \in \mathcal X) = 1 P(XX)=1 for some countable set X ⊂ R \mathcal X \sub R XR

离散变量可以被其概率质量函数充分说明。

概率质量函数

probability mass function (pmf)。定义 p ( x ) = P ( X = x )   ∀   x ∈ X p(x) = P(X=x) \ \forall \ x \in X p(x)=P(X=x)  xX

性质:

  1. p ( x ) ≥ 0 p(x) \ge 0 p(x)0
  2. ∑ x ∈ X p ( x ) = 1 \sum_{x \in X} p(x) = 1 xXp(x)=1

我们常用记号 X ∼ p ( x ) X \sim p(x) Xp(x)来表示X的pmf是p(x)。

累积分布函数

cumulative density function (cdf)。定义 F ( x ) = P ( X ≤ x ) F(x) = P(X \le x) F(x)=P(Xx)

性质

  1. F ( x ) ≥ 0 F(x) \ge 0 F(x)0,且单调非递减

  2. l i m x − > ∞ F ( x ) = 1 lim_{x->\infty} F(x) = 1 limx>F(x)=1 l i m x − > − ∞ F ( x ) = 0 lim_{x->-\infty} F(x) = 0 limx>F(x)=0

  3. F ( x ) F(x) F(x) 是右连续的,即 l i m x − > a + F ( x ) = F ( a ) lim_{x->a^+} F(x) = F(a) limx>a+F(x)=F(a)

  4. P ( X = a ) = F ( a )   −   l i m x − > a − F ( a ) P(X=a) = F(a) \ - \ lim_{x->a^-} F(a) P(X=a)=F(a)  limx>aF(a)

经典的离散变量

Bernoulli

p ( x ) = p x + ( 1 − p ) ( 1 − x ) ;   x ∈ { 0 , 1 } p(x) = px + (1-p)(1-x); \ x \in \{0,1\} p(x)=px+(1p)(1x); x

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值