Calc3: Multiple Integrals

Double Integrals Over Rectangles

Geometry

We have z=f(x,y) defined on [ a , b ] × [ c , d ] [a,b] \times [c,d] [a,b]×[c,d]. We name the domain to be D, and cut it into smaller rectangles. Take an arbitrary point ( x i j , y i j ) (x_{ij}, y_{ij}) (xij,yij) on the rectangle [ x i , x i + 1 ] × [ y j , y j + 1 ] [x_i, x_{i+1}] \times [y_j,y_{j+1}] [xi,xi+1]×[yj,yj+1]. We calculate the Riemann sum.
∑ i = 1 m ∑ j = 1 n f ( x i j , y i j ) ( x i + 1 − x i ) ( y j + 1 − y j ) = ∑ i = 1 m ∑ j = 1 n f ( x i j , y i j ) b − a m d − c n \sum_{i=1}^m\sum_{j=1}^n f(x_{ij}, y_{ij}) (x_{i+1} - x_i)(y_{j+1} - y_{j}) \\\\ = \sum_{i=1}^m\sum_{j=1}^n f(x_{ij}, y_{ij}) \frac{b-a}{m} \frac{d-c}{n} \\\\ i=1mj=1nf(xij,yij)(xi+1xi)(yj+1yj)=i=1mj=1nf(xij,yij)mbandc
If such a limit exists, then we define it to be the double integral of f over the rectangle D. This is the volume between f and xy-plane on D. If the value of the function is always 1 in D, then the double integral equals to the area of D.

Iterated Integrals

Introduce a function A ( x ) = ∫ c d f ( x , y ) d y A(x) = \int_c^d f(x,y) dy A(x)=cdf(x,y)dy. Next, we integrate A. ∫ a b A ( x ) d x = ∫ a b [ ∫ c d f ( x , y ) d y ] d x \int_a^b A(x) dx = \int_a^b [\int_c^d f(x,y) dy] dx abA(x)dx=ab[cdf(x,y)dy]dx. Alternatively, we can introduce a function of B ( y ) B(y) B(y) to integrate on x first.

Fubini’s Theorem

Assume f is continuous function on the rectangle D = { ( x , y ) ∣ a ≤ x ≤ b , c ≤ y ≤ d } D=\{(x,y)|a\le x\le b, c \le y\le d \} D={(x,y)axb,cyd}.
∫ ∫ D f ( x , y ) d A = ∫ a b ∫ c d f ( x , y ) d y d x = ∫ c d ∫ a b f ( x , y ) d x d y \int\int_D f(x,y) dA = \int_a^b \int_c^d f(x,y) dydx = \int_c^d \int_a^b f(x,y) dxdy Df(x,y)dA=abcdf(x,y)dydx=cdabf(x,y)dxdy
E.x.

Evaluate ∫ ∫ y s i n ( x y ) d A \int \int ysin(xy) dA ysin(xy)dA where D = [ 1 , 2 ] × [ 0 , π ] D = [1,2] \times [0,\pi] D=[1,2]×[0,π].

sol:
∫ ∫ y s i n ( x y ) d A = ∫ 0 π ∫ 1 2 y s i n ( x y ) d x d y = ∫ 0 π [ − c o s ( x y ) ] 1 2 d y = ∫ 0 π c o s ( y ) − c o s ( 2 y ) d y \int \int ysin(xy) dA \\\\ = \int_0^{\pi} \int_1^2 ysin(xy) dxdy \\\\ = \int_0^{\pi} [-cos(xy)]_1^2 dy \\\\ = \int_0^{\pi} cos(y)-cos(2y) dy \\\\ ysin(xy)dA=0π12ysin(xy)dxdy=0π[cos(xy)]12dy=0πcos(y)cos(2y)dy
The order of doing iterated integral may be crucial.

Double Integrals Over General Regions

We have f(x,y) on D. Assume D is bounded (we can find a rectangle R that encloses D).

Define h(x,y) = f(x,y) if ( x , y ) ∈ D (x,y) \in D (x,y)D, and h(x,y) = 0 if ( x , y ) ∈ ( R − D ) (x,y) \in (R-D) (x,y)(RD). In this case,
∫ ∫ D f ( x , y ) d A = ∫ ∫ R h ( x , y ) d A \int\int_D f(x,y) dA = \int\int_R h(x,y) dA Df(x,y)dA=Rh(x,y)dA
A plane region D is said to be of type I if it lies between the graphs of two continuous functions of x, say g 1 ( x ) g_1(x) g1(x) and g 2 ( x ) g_2(x) g2(x).

By applying the Fubini’s theorem,
∫ ∫ D f ( x , y ) d A = ∫ a b ∫ g 1 ( x ) g 2 ( x ) f ( x , y ) d y d x \int\int_D f(x,y) dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y) dydx Df(x,y)dA=abg1(x)g2(x)f(x,y)dydx
A plane region D is said to be of type II if it lies between the graphs of two continuous functions of y.

E.x.

Evaluate ∫ 0 1 ∫ x 1 s i n ( y 2 ) d y d x \int_0^1 \int_x^1 sin(y^2) dydx 01x1sin(y2)dydx.

sol:

Trick here is to switch the order of integration. Drawing the region D, we find out that it is both type I and type II. Convert the integral.
∫ 0 1 ∫ x 1 s i n ( y 2 ) d y d x = ∫ 0 1 ∫ 0 y s i n ( y 2 ) d x d y = ∫ 0 1 y s i n ( y 2 ) d y \int_0^1 \int_x^1 sin(y^2) dydx \\\\ = \int_0^1 \int_0^y sin(y^2) dxdy \\\\ = \int_0^1 ysin(y^2) dy \\\\ 01x1sin(y2)dydx=010ysin(y2)dxdy=01ysin(y2)dy

Double Integrals In Polar Coordinates

Suppose f is a continuous function defined on D (Draw a picture of D!). Convert the limit of x and y to r and theta in the polar coordinate as 0 ≤ a ≤ r ≤ b 0 \le a \le r \le b 0arb, α ≤ β \alpha \le \beta αβ. The formula is as below
∫ ∫ D f ( x , y ) d A = ∫ α β ∫ a b f ( r c o s θ , r s i n θ ) r d r d θ \int\int_D f(x,y) dA = \int_{\alpha}^{\beta} \int_{a}^{b} f(r cos \theta, r sin \theta)r dr d\theta Df(x,y)dA=αβabf(rcosθ,rsinθ)rdrdθ
If the formula involves z, then simplify it to the form of z=f(x,y). If the original equation involves terms like z 2 z^2 z2, remember the integral of z = g ( x , y ) z=\sqrt{g(x,y)} z=g(x,y) only calculate the part where z > 0 z>0 z>0. Based on symmetry, we can get the desired answer by multiplying the integral result by 2.

E.x.

Evaluate ∫ ∫ D 3 x + 4 y 2 d A \int \int_D 3x+4y^2 dA D3x+4y2dA where the region is the upper half plane bounded by the circles x 2 + y 2 = 1 x^2+y^2=1 x2+y2=1 and x 2 + y 2 = 4 x^2+y^2=4 x2+y2=4.

sol:

Write D = { ( r , θ ) ∣ 1 ≤ r ≤ 2 , 0 ≤ θ ≤ π } D = \{(r,\theta) | 1 \le r \le 2, 0 \le \theta \le \pi\} D={(r,θ)1r2,0θπ}.
∫ ∫ D 3 x + 4 y 2 d A = ∫ 1 2 ∫ 0 π ( 3 r c o s θ + 4 r 2 s i n 2 θ ) r d θ d r \int \int_D 3x+4y^2 dA = \int_1^2 \int_0^{\pi} (3rcos\theta + 4r^2sin^2\theta)r d\theta dr D3x+4y2dA=120π(3rcosθ+4r2sin2θ)rdθdr
E.x.

Compute the volume of the solid bounded by the plane z=0 and the paraboloid z = 1 − x 2 − y 2 z=1-x^2-y^2 z=1x2y2.

sol:
∫ ∫ D 1 − x 2 − y 2 d A = ∫ 0 1 ∫ 0 2 π ( 1 − r 2 ) r d θ d r \int \int_D 1-x^2-y^2 dA = \int_0^1 \int_0^{2\pi} (1-r^2)r d\theta dr D1x2y2dA=0102π(1r2)rdθdr
E.x.

Find the region enclosed by r = c o s 2 θ r=cos2\theta r=cos2θ. For simplicity, restrict − π / 4 ≤ θ ≤ π / 4 -\pi/4 \le \theta \le \pi/4 π/4θπ/4.

sol:
a r e a = ∫ π / 4 − π / 4 ∫ 0 c o s 2 θ r d r d θ = ∫ π / 4 − π / 4 1 2 ( c o s 2 θ ) 2 d θ = ∫ π / 4 − π / 4 ( 1 + c o s 4 θ ) 4 d θ = π / 8 area = \int_{\pi/4}^{-\pi/4} \int_{0}^{cos 2 \theta} r dr d\theta\\\\ = \int_{\pi/4}^{-\pi/4} \frac 1 2 (cos 2\theta)^2 d\theta \\\\ = \int_{\pi/4}^{-\pi/4} \frac{(1 + cos 4\theta)}{4} d\theta \\\\ = \pi/8 area=π/4π/40cos2θrdrdθ=π/4π/421(cos2θ)2dθ=π/4π/44(1+cos4θ)dθ=π/8

Applications of Double Integrals

Surface Area Element

S is a surface given by z=f(x,y). Derive a formula for computing the area of S. Assume that the domain of f is rectangular. The idea is to approximate S by tangent planes. Let Δ T i j \Delta T_{ij} ΔTij to represent such planes. The work remaining is to compute Δ T i j \Delta T_{ij} ΔTij.

Name the points of one such plane as P, Q, R, W. The vector P Q ⃗ = < Δ x , 0 , f x ( x i , y j ) Δ x > \vec{PQ} = <\Delta x, 0, f_x(x_i,y_j)\Delta x> PQ =<Δx,0,fx(xi,yj)Δx> , and the vector P R ⃗ = < 0 , Δ y , f y ( x i , y j ) Δ y > \vec{PR} = <0, \Delta y, f_y(x_i,y_j)\Delta y> PR =<0,Δy,fy(xi,yj)Δy> . The area of the parallelogram PQWR is given by
∣ P Q ⃗ × P R ⃗ ∣ = Δ x Δ y ∣ < − f x ( x i , y j ) , − f y ( x i , y j ) , 1 > ∣ |\vec{PQ} \times \vec{PR}| = \Delta x\Delta y|<-f_x(x_i,y_j),-f_y(x_i,y_j),1>| PQ ×PR =ΔxΔy<fx(xi,yj),fy(xi,yj),1>
Using Riemann sum, we obtain the area of S as follows
a r e a ( S ) = ∫ ∫ D f x 2 + f y 2 + 1 d x d y area(S) = \int \int_D \sqrt{f_x^2 + f_y^2 + 1} dxdy area(S)=Dfx2+fy2+1 dxdy

Density and Mass

The density at the point (x,y) is given by
ρ ( x , y ) = l i m Δ m Δ A \rho(x,y) = lim \frac{\Delta m}{\Delta A} ρ(x,y)=limΔAΔm
Assume we know that density ρ ( x , y ) \rho(x,y) ρ(x,y) and we would like to compute the mass of the object.
m = ∫ ∫ D ρ ( x , y ) d A m = \int \int_D \rho(x,y) dA m=Dρ(x,y)dA
The same idea can be applied to the charge density and total charge.

Center of Mass

The moment of the lamina about the x-axis and y-axis is
M x = ∫ ∫ D y ρ ( x , y ) d A M y = ∫ ∫ D x ρ ( x , y ) d A M_x = \int\int_D y\rho(x,y) dA \\\\ M_y = \int\int_D x\rho(x,y) dA \\\\ Mx=Dyρ(x,y)dAMy=Dxρ(x,y)dA
The center of the mass is ( x ˉ , y ˉ ) (\bar x, \bar y) (xˉ,yˉ) so that m x ˉ = M y m \bar x = M_y mxˉ=My and m y ˉ = M x m \bar y = M_x myˉ=Mx. Therefore,
x ˉ = 1 m ∫ ∫ D x ρ ( x , y ) d A y ˉ = 1 m ∫ ∫ D y ρ ( x , y ) d A \bar x = \frac 1 m \int\int_D x\rho(x,y) dA \\\\ \bar y = \frac 1 m \int\int_D y\rho(x,y) dA \\\\ xˉ=m1Dxρ(x,y)dAyˉ=m1Dyρ(x,y)dA
E.x.

The region is a half-circle with center at the origin and radius of a. The density of a lamina is x 2 + y 2 \sqrt{x^2+y^2} x2+y2 . Find its center of mass.

sol:

Based on symmetry, we know M x M_x Mx is 0.
M y = ∫ ∫ D y x 2 + y 2 d A = ∫ 0 π ∫ 0 a r 3 s i n θ   d r d θ M_y = \int\int_D y\sqrt{x^2+y^2} dA \\\\ = \int_0^{\pi}\int_0^a r^3 sin\theta \ drd\theta My=Dyx2+y2 dA=0π0ar3sinθ drdθ

Probability

Let f(x,y) stand for the pmf.
P [ ( x , y ) ∈ D ] = ∫ ∫ D f ( x , y ) d A P[(x,y) \in D] = \int\int_D f(x,y) dA P[(x,y)D]=Df(x,y)dA

Triple Integrals

The Fubini’s Theorem can be extended to triple integrals.

E in R 3 R^3 R3 is said to be of type I if it can be written as
E = { ( x , y , z ) ∣ ( x , y ) ∈ D , D ⊂ R 2 , u 1 ( x , y ) ≤ z ≤ u 2 ( x , y ) } ∫ ∫ ∫ E f ( x , y , z ) d V = ∫ ∫ D [ ∫ u 1 ( x , y ) u 2 ( x , y ) f ( x , y , z ) d z ] d A E = \{(x,y,z)|(x,y) \in D, D \sub R^2, u_1(x,y) \le z \le u_2(x,y) \} \\\\ \int\int\int_E f(x,y,z) dV = \int\int_D[\int_{u_1(x,y)}^{u_2(x,y)} f(x,y,z) dz] dA E={(x,y,z)(x,y)D,DR2,u1(x,y)zu2(x,y)}Ef(x,y,z)dV=D[u1(x,y)u2(x,y)f(x,y,z)dz]dA
If we also know that D is, say, type I, then the above triple is further equal to
∫ a b ∫ g 1 ( x ) g 2 ( x ) ∫ u 1 ( x , y ) u 2 ( x , y ) f ( x , y , z ) d z d y d x \int_a^b\int_{g_1(x)}^{g_2(x)}\int_{u_1(x,y)}^{u_2(x,y)} f(x,y,z) dzdydx abg1(x)g2(x)u1(x,y)u2(x,y)f(x,y,z)dzdydx
E.x.

E is bounded by the coordinates and the plane x+y+z=1. Find ∫ ∫ ∫ E z d V \int\int\int_E z dV EzdV.

sol:

Define the projection of E to the xy-plane to be D.
E = { ( x , y , z ) ∣ ( x , y ) ∈ D , 0 ≤ z ≤ 1 − x − y } ∫ ∫ ∫ E z d V = ∫ 0 1 ∫ 0 1 − x ∫ 0 1 − x − y z d z d y d x E = \{(x,y,z)|(x,y) \in D, 0 \le z \le 1-x-y \} \\\\ \int\int\int_E z dV = \int_0^1\int_{0}^{1-x}\int_{0}^{1-x-y} z dzdydx E={(x,y,z)(x,y)D,0z1xy}EzdV=0101x01xyzdzdydx
E.x.

Use triple integrals to find the volume of the tetrahedron T bounded by the plane x+2y+z=2, x=2y, x=0, and z=0.

sol:

Draw the picture. Find the intersection. A=(0,0,2), B=(0,1,0), C=(1,1/2,0). We want to find volume of OABC.
V O A B C = ∫ ∫ ∫ E 1 d V = ∫ 0 1 ∫ x / 2 1 − x / 2 ∫ 0 2 − x − 2 y d z d y d x V_{OABC} = \int\int\int_E 1 dV \\\\ = \int_0^1\int_{x/2}^{1-x/2}\int_{0}^{2-x-2y} dzdydx \\\\ VOABC=E1dV=01x/21x/202x2ydzdydx

Triple Integrals in Cylindrical Coordinates

Say E is a type I and D has a clean form in the polar coordinate.
D = { ( r , θ ) ∣ α ≤ θ ≤ β , h 1 ( θ ) ≤ r ≤ h 2 ( θ ) } D = \{(r,\theta)| \alpha \le \theta \le \beta, h_1(\theta) \le r \le h_2(\theta) \} D={(r,θ)αθβ,h1(θ)rh2(θ)}
It is just the polar coordinates adding the z-axis.
∫ ∫ ∫ E f ( x , y , z ) d V = ∫ ∫ ∫ V f ( r , θ , z ) r   d z d r d θ \int\int\int_E f(x,y,z) dV = \int\int\int_V f(r,\theta, z)r \ dz drd\theta Ef(x,y,z)dV=Vf(r,θ,z)r dzdrdθ
E.x.

Describe the surface given by z=r in the cylindrical coordinate.

sol:
z = r = x 2 + y 2 z = r = \sqrt{x^2+y^2} z=r=x2+y2
E.x.

A solid E lies within the cylinder x 2 + y 2 = 1 x^2+y^2=1 x2+y2=1, below the plane z=4 and above the paraboloid z = 1 − ( x 2 + y 2 ) z=1-(x^2+y^2) z=1(x2+y2). The density function is x 2 + y 2 \sqrt{x^2+y^2} x2+y2 . Find its mass.

sol:
∫ ∫ ∫ E ρ ( x , y , z ) d V = ∫ 0 2 π ∫ 0 1 ∫ 1 − r 2 4 r 2   d z d r d θ \int\int\int_E \rho(x,y,z) dV \\\\ = \int_0^{2\pi}\int_0^1\int_{1-r^2}^{4} r^2 \ dzdrd\theta \\\\ Eρ(x,y,z)dV=02π011r24r2 dzdrdθ

Triple Integrals in Spherical Coordinates

We use ( ρ , θ , ϕ ) (\rho, \theta, \phi) (ρ,θ,ϕ) to represent a point P in the spherical coordinates. The first component is the distance between O and P. The third component is the angle between O P ⃗ \vec{OP} OP and the positive direction of z-axis ( o ≤ ϕ ≤ π o \le \phi \le \pi oϕπ).
x = ρ s i n ϕ c o s θ y = ρ s i n ϕ s i n θ z = ρ c o s ϕ x = \rho sin \phi cos \theta \\\\ y = \rho sin \phi sin \theta \\\\ z = \rho cos \phi \\\\ x=ρsinϕcosθy=ρsinϕsinθz=ρcosϕ
The formula is as below
∫ ∫ ∫ E f ( x , y , z ) d V = ∫ c d ∫ α β ∫ a b f ( ρ , θ , ϕ ) ρ 2 s i n ϕ   d ρ d θ d ϕ \int\int\int_E f(x,y,z) dV = \int_{c}^{d} \int_{\alpha}^{\beta} \int_{a}^{b} f(\rho, \theta, \phi) \rho^2 sin \phi \ d\rho d \theta d \phi Ef(x,y,z)dV=cdαβabf(ρ,θ,ϕ)ρ2sinϕ dρdθdϕ
E.x.

Compute the volume between the cone z = x 2 + y 2 z=\sqrt{x^2+y^2} z=x2+y2 and the sphere x 2 + y 2 + z 2 = z x^2+y^2+z^2=z x2+y2+z2=z.

sol:

The latter part is a sphere of radius 0.5 centered at (0,0,0.5). In the spherical coordinates, the two planes can be expressed as
c o s ϕ = s i n ϕ ρ = c o s ϕ cos \phi = sin \phi\\\\ \rho = cos \phi \\\\ cosϕ=sinϕρ=cosϕ
The solid can be expressed as
E = { ( ρ , θ , ϕ ) ∣ 0 ≤ ϕ ≤ π / 4 , 0 ≤ ρ ≤ c o s ϕ , 0 ≤ θ ≤ 2 π } E = \{(\rho, \theta, \phi)| 0 \le \phi \le \pi/4, 0 \le \rho \le cos \phi, 0 \le \theta \le 2\pi\} E={(ρ,θ,ϕ)0ϕπ/4,0ρcosϕ,0θ2π}

Change of Variables in Multiple Integrals

One-to-One Maps

Change of variable for integrals.

We have f : [ a , b ] − > R f:[a,b]->R f:[a,b]>R and want to substitute x = g ( u ) x=g(u) x=g(u). Let g ( c ) = a , g ( d ) = b g(c)=a, g(d)=b g(c)=a,g(d)=b. We need one assumption that g is monotonic.
∫ a b f ( x ) d x = ∫ c d f ( g ( u ) ) g ′ ( u ) d u \int_a^b f(x)dx = \int_c^d f(g(u))g'(u) du abf(x)dx=cdf(g(u))g(u)du
Change of variable for double integrals. Special case: polar coordinate.

In general, transformation T ( u , v ) = ( x , y ) T(u,v) = (x,y) T(u,v)=(x,y). (u,v) and (x,y) are connected by
x = g ( u , v ) y = h ( u , v ) x = g(u,v)\\\\ y = h(u,v) x=g(u,v)y=h(u,v)
If it happens that for ( u 1 , v 1 ) ≠ ( u 2 , v 2 ) (u_1, v_1) \ne (u_2, v_2) (u1,v1)=(u2,v2) and T ( u 1 , v 1 ) = T ( u 2 , v 2 ) T(u_1, v_1) = T(u_2, v_2) T(u1,v1)=T(u2,v2) then we say that the map T is not one-to-one.

Given ( x 2 , y 2 ) (x_2, y_2) (x2,y2), we can find one ( u 2 , v 2 ) (u_2, v_2) (u2,v2) s.t. T ( u 2 , v 2 ) = ( x 2 , y 2 ) T(u_2, v_2)=(x_2, y_2) T(u2,v2)=(x2,y2). This is called T − 1 T^{-1} T1.

To see whether a map is one-to-one:

  1. T sends different points to different points

  2. for every ( x , y ) ∈ R 2 (x,y)\in R^2 (x,y)R2, we are able to find ( u , v ) (u, v) (u,v) s.t. T ( u , v ) = ( x , y ) T(u, v)=(x, y) T(u,v)=(x,y).

Change Variable Formula

We approximate the region after transformation by a parallelogram.

The area of such parallelogram is
A B ⃗ = T ( u + Δ u , v ) − T ( u , v ) = < g ( u + Δ u , v ) − g ( u , v ) , h ( u + Δ u , v ) − h ( u , v ) > = < g u Δ u , h u Δ u > A C ⃗ = T ( u , v + Δ v ) − T ( u , v ) = < g ( u , v + Δ v ) − g ( u , v ) , h ( u , v + Δ v ) − h ( u , v ) > = < g v Δ v , h v Δ v > S = ∣ A B ⃗ × A C ⃗ ∣ = ∣ g u h v − g v h u ∣ \vec{AB} = T(u+\Delta u, v) - T(u, v) \\\\ = <g(u+\Delta u, v) - g(u,v), h(u+\Delta u, v) - h(u,v)> \\\\ = <g_u \Delta u, h_u \Delta u> \\\\ \vec{AC} = T(u, v+\Delta v) - T(u, v) \\\\ = <g(u, v+\Delta v) - g(u,v), h(u, v+\Delta v) - h(u,v)> \\\\ = <g_v \Delta v, h_v \Delta v> \\\\ S = |\vec{AB} \times \vec{AC}| = |g_uh_v- g_vh_u| AB =T(u+Δu,v)T(u,v)=<g(u+Δu,v)g(u,v),h(u+Δu,v)h(u,v)>=<guΔu,huΔu>AC =T(u,v+Δv)T(u,v)=<g(u,v+Δv)g(u,v),h(u,v+Δv)h(u,v)>=<gvΔv,hvΔv>S=AB ×AC =guhvgvhu
Definition of Jacobian of the transformation T

Given by x = g ( u , v ) x = g(u,v) x=g(u,v) and y = h ( u , v ) y = h(u,v) y=h(u,v) is
∂ ( x , y ) ∂ ( u , v ) = g u h v − g v h u \frac{\partial (x,y)}{\partial (u,v)} = g_uh_v- g_vh_u (u,v)(x,y)=guhvgvhu
In the general case, the change of variable in integrals
∫ ∫ ∫ E d V = ∫ ∫ ∫ V ∣ ∂ ( x , y , z ) ∂ ( u , v , w ) ∣   d u d v d w \int\int\int_E dV = \int\int\int_V |\frac{\partial(x,y,z)}{\partial(u,v,w)}| \ dudvdw EdV=V(u,v,w)(x,y,z) dudvdw
E.x.

We have a region R bounded by (1,0), (2,0), (0,-2), and (0,-1). Evaluate ∫ ∫ R e x + y x − y d A \int\int_R e^{\frac{x+y}{x-y}} dA Rexyx+ydA.

sol:

We first let u = x + y ,   v = x − y u=x+y, \ v=x-y u=x+y, v=xy. Verify that this is an one-to-one map.

Compute the Jacobian.
∂ ( x , y ) ∂ ( u , v ) = x u y v − x v y u = − 1 2 \frac{\partial (x,y)}{\partial (u,v)} = x_uy_v- x_vy_u = -\frac 1 2 (u,v)(x,y)=xuyvxvyu=21
The next step is to figure out how R is transformed under the map T.

(x,y) = (1,0) => (u,v) = (1,1)

(x,y) = (2,0) => (u,v) = (2,2)

(x,y) = (0,-1) => (u,v) = (-1,1)

(x,y) = (0,-2) => (u,v) = (-2,2)
∫ ∫ R e x + y x − y d A = ∫ ∫ S e u v ∣ − 1 2 ∣ d u d v = ∫ 1 2 ∫ − v v 1 2 e u v d u d v = ∫ 1 2 [ 1 2 v e u v ] − v v d v \int\int_R e^{\frac{x+y}{x-y}} dA = \int\int_S e^{\frac{u}{v}} |-\frac 1 2| dudv \\\\ = \int_{1}^{2}\int_{-v}^{v} \frac 1 2 e^{\frac{u}{v}} dudv \\\\ = \int_{1}^{2} [\frac 1 2 ve^{\frac u v}]_{-v}^{v} dv \\\\ Rexyx+ydA=Sevu21dudv=12vv21evududv=12[21vevu]vvdv

Reference

  • Multivariable_Calculus_8th_Edition (15.1-15.9), James Stewart
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值