class Self_Attn(nn.Module):
""" Self attention Layer"""
def __init__(self, in_dim, activation):
super(Self_Attn, self).__init__()
self.chanel_in = in_dim
self.activation = activation
self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 8, kernel_size=1)
self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 8, kernel_size=1)
self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1)
self.gamma = nn.Parameter(torch.zeros(1))
self.softmax = nn.Softmax(dim=-1) #
def forward(self, x):
"""
inputs :
x : input feature maps( B X C X W X H)
returns :
out : self attention value + input feature
attention: B X N X N (N is Width*Height)
"""
m_batchsize, C, width, height = x.size()
proj_query = self.query_conv(x).view(m_batchsize, -1, width * height).permute(0, 2, 1) # B X N*C
proj_key = self.key_conv(x).view(m_batchsize, -1, width * height) # B X C x N(*W*H)
energy = torch.bmm(proj_query, proj_key) # transpose check B*N*N
attention = self.softmax(energy) # BX (N) X (N)
proj_value = self.value_conv(x).view(m_batchsize, -1, width * height) # B X C X N
out = torch.bmm(proj_value, attention.permute(0, 2, 1))
out = out.view(m_batchsize, C, width, height)
out = self.gamma * out + x
return out, attention
self—attention
最新推荐文章于 2024-06-05 00:31:00 发布
本文介绍了一种用于神经网络的Self-Attention层,通过Conv2d操作实现注意力机制,用于特征映射的加权聚合。它包括查询、关键和值的投影,softmax归一化和加权求和,展示了如何在前向传播中使用这些组件来提升模型性能。
摘要由CSDN通过智能技术生成